Course code	FMPE 501
Course title	Design of farm power and machinery systems
Course credit	3+1
Objective of Course	 To develop knowledge and skill for technical education and research in design of farm power and machinery. To develop the ability of the students for formulating and solving solutions to problems pertaining to farm machinery design. To strengthen the knowledge among students for Industry and
	R&D organizations.
Course Content	 Theory UNIT I Modern trends, principles, procedures, fundamentals and economic considerations for design and development of farm power and machinery systems. Design considerations, procedure and their applications in agricultural tractors & typical machines. Reliability criteria in design and its application. UNIT II Analytical design considerations of linkages/ components in farm machinery and its application. UNIT III Design of selected farm equipment: – tillage, seeding, planting, intercultural, plant protection, harvesting and threshing. Design of rotary, vibrating and oscillating machines. UNIT IV Design and selection of matching power unit. UNIT V Safety devices for tractors & farm implements. Practical Statement and formulation of design problems. Design of farm power systems. Design of mechanisms & prototypes in farm
References:	 machinery. Arther W Judge 1967. <i>High Speed Diesel Engines</i>. Chapman & Hall. Barger EL, Liljedahl JB & McKibben EC 1967. <i>Tractors and their Power Units</i>. Wiley Eastern. Bernacki C, Haman J & Kanafajski CZ.1972. <i>Agricultural Machines</i>. Oxford & IBH. Bindra OS & Singh Harcharan 1971. <i>Pesticides Application Equipments</i> Oxford & IBH. Bosoi ES, Verniaev OV & Sultan-Shakh EG. 1990. <i>Theory, Construction and Calculations of Agricultural Machinery</i>. Vol. I. Oxonian Press. Klenin NI, Popov IF & Sakoon VA. 1987. <i>Agricultural Machines. Theory of Operations, Computing and Controlling Parameters and the Condition of Operation</i>. Amrind Publ.
	 Lal R & Dutta PC. 1979. <i>Agricultural Engineering</i> (through solved examples). Saroj Parkashan. Maleev VL. 1945. <i>Internal Combustion Engines</i>. McGraw

Course O	utco	mes		 Mathur ML & Sharma RP. 1988. <i>A Course in Internal Combustion Engines</i>. Dhanpat Rai & Sons. Ralph Alcock.1986. <i>Tractor Implements System</i>. AVI Publ. Raymond N, Yong Ezzat A & Nicolas Skiadas 1984. <i>Vehicle Traction Mechanics</i>. ElsevierSharma PC & Aggarwal DK. 1989. <i>A Text Book of Machine Design</i>. Katson Publishing House. <i>Theory and Construction</i>. Vol. I. U.S. Dept. of Commerce, National Technical Information Service, Springfield, Virginia. Thornhill EW & Matthews GA. 1995. <i>Pesticide Application Equipment forUse in Agriculture</i>. Vol. II. <i>Mechanically Powered Equipment</i>. FAO Rome William. R Gill & Glen E Vanden Berg. 1968. <i>Soil Dynamics in Tillage and Traction</i>. US Govt. Printing Office, Washington, D.C. Yatsuk EP.1981. <i>Rotary Soil Working Machines Construction, Calculation and Design</i>. American Publ. Co At the end of the course, learners will be able CO1: To acquaint and equip with the principles, fundamentals and economic considerations for design and development of farm power and machinery systems. 											
				considerations.											
				CO3 : To design components and farm equipment. CO4 : To solve the analytical problems related to the matching											
					pow	er un	it.	-	-	-					-
				CO5	-		-	nt wit	h safe	ety de	evices	for	tracto	ors and	l farm
Mapping	hetu	zeen (POsa		lemei	nts								
CO	DULW						0							PSO	,
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	FMPE 502
Course title	Soil dynamics in tillage and traction
Course credit	2+1
Objective of Course	• To develop knowledge and skill for technical education and
U U	research in soil dynamics.
	• To develop the ability of the students for formulating and
	solving solutions to problems pertaining to soil dynamics.
	• To strengthen the knowledge among students for Industry and
	R&D organizations.
Course Content	Theory
	UNIT I
	Dynamic properties of soil and their measurement, stress-strain
	relationships, theory of soil failure.
	UNIT II
	Mechanics of tillage tools and geometry of soil tool system,
	design parameters and performance of tillage tools.
	UNIT III
	Dimensional analysis of different variables related to soil-tyre
	system; soil vehicle models; mechanics of steering of farm
	tractor; special problems of wet land traction and floatation.
	UNIT IV
	Introduction of traction devices, tyres-types, function & size,
	their selection; mechanics of traction devices. Deflection
	between traction devices and soil, slippage and sinkage of
	wheels, evaluation and prediction of traction performance,
	design of traction and transport devices. Soil compaction by
	agricultural vehicles and machines.
	Practical
	Relationship of soil parameters to the forces acting on tillage
	tools, wheel slippage and tyre selection, design and performance
D.f	of traction devices and soil working tools.
References:	• Daniel Hill. 1962. Fundamentals of Soil Physics. Academic
	Press.
	• Gill & Vandenberg.1968. Soil Dynamics in Tillage and
	Traction. Supdt. of Documents, U.S. Govt. Printing Office,
	Washington, D.C.
	• Sineokov GN. 1965. Design of Soil Tillage Machines.
	INSDOC, New Delhi.
	• Terzaghi K & Peck Ralph B.1967. Soil Mechanics in
Course Outcomes	Engineering Practices. John Wiley & Sons.
Course Outcomes	At the end of the course, learners will be able
	CO1 : To acquaint and equip with the principles of dynamic properties of soil and its effect on soil tyre performance.
	CO2: Acquire knowledge on basics of soil failure and tillage
	tool design
	CO3 : Understand the application of dimensional analysis to soil
	dynamics problems.
	CO4 : To solve the analytical problems related to the soil
	dynamics.
	aynannes.

				CO	5:To p	oredic	t the	tractio	on pei	forma	ance o	f the t	yre.		
Mapping	Mapping between Cos, POs and PSOs														
CO		PO PSO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	FMPE 503
Course title	Testing and evaluation of tractors and farm equipment
Course credit	2+1
Objective of Course	 To develop knowledge and skill for technical education and research in testing of farm power and machinery. To develop the ability of the students for formulating and solving solutions to problems pertaining to farm power and machinery.
	 machinery testing. To strengthen the knowledge among students for Industry and R&D organizations.
Course Content	Theory
course content	UNIT I
	Types of tests; test procedure, national and international codes.UNIT IITest equipment; usage and limitations. Power losses in
	dynamometers and hydraulic test equipment. UNIT III Prototype feasibility testing and field evaluation. Laboratory and
	field testing of selected farm equipment. Non-destructive testing techniques UNIT IV
	Tractor performance testing, evaluation and interpretation of results. UNIT V
	Review and interpretation of test reports. Case studies Practical
	Laboratory and field-testing of selected farm equipment. Interpretation and reporting of test results. Material testing and its chemical composition. Accelerated testing of fast wearing components. Non-destructive testing techniques
References:	• Anonymous. 1983. <i>RNAM Test Code & Procedures for Farm Machinery</i> . Technical Series 12.
	• Barger EL, Liljedahl JB & McKibben EC. 1967. <i>Tractors and their Power Units</i> . Wiley Eastern.
	• Indian Standard Codes for Agril. Implements. Published by ISI, New Delhi.
	• Inns FM. 1986. Selection, Testing and Evaluation of Agricultural Machines and Equipment. FAO Service Bull. No. 115.
	• Lal R & Dutta PC. 1979. <i>Agricultural Engineering</i> (through solve examples). Saroj Parkashan,
	• Metha ML, Verma SR, Mishra SK & Sharma VK. 1995. <i>Testing and Evaluation of Agricultural Machinery</i> . National Agricultural Technology Information Centre, Ludhiana.
	 Nebraska Tractor Test Code for Testing Tractor, Nebraska, USA. Smith DW, Sima PG, & O'Neill D, H. 2001. Testing and
	• Smith DW, Sims BG & O'Neill D H. 2001. Testing and Evaluation of Agricultural Machinery and Equipment -

				Pr	incipl	e and	l Prac	ctice.	FAO	Agric	ultura	l Serv	ices	Bull.	110
Course C) utco	mes		At th	ne end	l of th	ne cou	ırse, l	earne	rs will	l be al	ole			
				CO1: To acquaint and equip with standards of farm power and											
					mac	chine	ry tes	ting.							
			CO2: Acquire knowledge on basics of test procedures											S	
				CO3	: Unc	lersta	nd th	e wor	king	of test	equip	ment.			
				CO4	: To t	test tł	ne sel	ected	farm	equip	ment				
				CO5 :To interpret the test report.											
Mapping	g betv	veen (Cos, I	POs a	and P	SOs									
CO]	PO							PSC)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	FMPE 504
Course title	System simulation and computer aided problem solving in
	engineering
Course credit	1+1
Objective of Course	• To develop knowledge and skill for technical education and
	research in system simulation and computer aided problem
	solving.
	• To develop the ability of the students for formulating and
	solving solutions to problems pertaining to farm power and
	machinery using computer.
	• To strengthen the knowledge among students for Industry and
	R&D organizations.
Course Content	Theory
	UNIT I
	Concept, advantages and limitation of dimensional analysis,
	dimensions and units, fundamental and derived units, systems of
	units, conversion of units of measurement, conversion of
	dimensional constants, conversion of equations in different units,
	complete set of dimensionless products and their formulation
	methods- the Rayleigh's method, Buckingham's Pi theorem and
	other methods.
	UNIT II
	Mathematical modelling and engineering problem solving.
	UNIT III
	Computers and softwares – software development process –
	Algorithm design, – program composition- quality control-
	documentation and maintenance – software strategy. UNIT IV
	Approximation- round off errors- truncation errors. Nature of
	simulation-systems models and simulation-discreet event
	simulation-systems models and simulation discrete event simulation- time advance mechanisms- components of discrete
	event simulation model. Simulation of singular server que-
	programme organization and logic- development of algorithm
	UNIT V
	Solving differential equation on computers- modelling
	engineering systems with ordinary differential equations-
	solution techniques using computers
References:	Averill M. Law & W David Kelton.2000. Simulation Modeling
	and Analysis. McGraw Hill.
	• Balagurusamy E. 2000. Numerical Methods. Tata McGraw
	Hill.
	• Buckingham E. 1914. On Physical Similar System. Physical
	Reviews 4:345.
	• Langhar H. 1951. Dimensional Analysis and Theory of
	Models. John Wiley & Sons.
	• Murphy J. 1950. <i>Similitude in Engineering</i> . The Roland Press
	Co.
	• Robert J Schilling & Sandra L Harries. 2002. Applied
	Numerical Methods for Engineers Using MATLAB and C.

				Th	omso	n Asi	ia.								
				• Sir	mpsor	n OJ.	2000	. Basi	ic Sta	tistics.	Oxfo	rd & 1	IBH.		
				• Sir	ngh, F	RP. 2	000.	Comp	outer 1	Applic	ation	in Fo	od T	echno	ology.
				Ac	adem	ic Pr	ess.	_							
				• Steven Chopra & Raywond Canale. 1989. Introduction to											
				Computing for Engineers. McGraw Hill.											
				• Veerarajan T & Ramachnadran T. 2004. Numerical Methods											
				with Programmes in C and C++. Tata McGraw Hill.											
			• Wilks SS. 1962. Mathematical Statistics. John Wiley & So												sons.
Course O	outco	mes		At the end of the course, learners will be able											
				CO1: To acquaint and equip with concept of dimensional											
				analysis.											
				CO2: Acquire knowledge on basics of mathematical modeling											
				CO3 : Understand the simulation modeling											
				CO4: To develop software for problem solving.											
				CO5	5 : To solve the engineering problems using computers.										
Mapping	betw	veen (Cos,	POs a	and P	SOs									
CO		I			-]	PO			-		-		PSC	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	FMPE 505									
Course title	Applied instrumentation in farm machinery and stress									
	analysis									
Course credit	2+1									
Objective of Course	• To develop knowledge and skill of instruments used for									
-	technical education and research in farm power and									
	machinery.									
	• To develop the ability of the students to use instruments									
	pertaining to farm power and machinery testing.									
	• To strengthen the knowledge among students for Industry and									
	R&D organizations.									
Course Content	Theory									
	UNITI									
	Strain and stress, strain relationship, strain gauges. Mechanical,									
	optical, electrical acoustical and pneumatic etc. and their use.									
	Various methods of determining strain/stresses experimentally.									
	Measuring devices for displacement (linear and rotational),									
	velocity, force, torque and shaft power. Strain gauges: types and									
	their application in two and three dimensional force									
	measurement. Design and analysis of strain gauges.									
	UNIT II									
	Introduction to functional elements of instruments. Active and									
	passive transducers, Analog and digital modes, Null and									
	deflection methods. Performance characteristics of instruments									
	including static and dynamic characteristics.									
	UNIT III									
	Devices for measurement of temperature, relative humidity,									
	pressure, sound, vibration, flow etc. Recording devices and their									
	type. Measuring instruments for calorific value of solid, liquid,									
	and gaseous fuels. Measurement of gas composition using GLC.									
	UNIT IV									
	Basic signal conditioning devices - data acquisition system -									
	micro computers for measurement and data acquisition. Data storage and their application.									
	Practical									
	Calibration of instruments, Experiment on LVDT, strain gauge									
	transducer, inductive and capacitive pick-ups, speed									
	measurement using optical devices, vibration measurement									
	exercises, making of thermocouples and their testing- basic									
	electronic circuits and application of linear ICs.									
References:	Ambrosius EE. 1966. Mechanical Measurement and									
	Instruments. The Ronald Press.									
	• Beckwith TG. 1996. <i>Mechanical Measurements</i> . Addison-									
	Wesley.									
	Doeblin EO. 1966.Measurement System - Application and									
	Design . McGraw Hill.									
	• Ernest O Doebelin.1995. Measurement Systems - Application									
	and Design. McGraw Hill.									
	• Holman P 1996. Experimental Methods for Engineers.									
	- montan i 1990. Experimental methods for Engineers.									

				Mo	Graw	/ Hill									
				• Na	chtiga	al (CL.	199	0	Instrui	nenta	tion	and	l C	ontrol.
				Fu	ndam	ental	s and	l Appl	icatic	on. Joh	n Wil	ley &	Sons	•	
				• Oli	ver	FJ.	1971	. Pra	actica	l; Ins	strume	entatio	on T	ransc	lucers.
				Ha	yden	Book	c Co.	. Perr	y CC	2 & Li	issner	HR.1	962.	The	Strain
								cGraw							
Course C) utco	mes		At th	e end	of th	e cou	urse, l	earne	rs will	be al	ole			
				CO1	: To	acq	uaint	and	equ	ip wi	th fu	nctior	nal e	leme	nts of
					inst	rumei	nts.		_						
		CO2: Acquire knowledge on basics of stress and strai													
		measurement.													
	CO3 : Understand the basics of signal conditioning devices														
				CO 4	: Gai	n kn	owle	dge o	n me	easurin	ig ins	trume	nts f	or ve	locity,
					forc	e, tor	que a	and sh	aft p	ower					
				CO5								-		ure, r	elative
					hum	nidity	, pres	ssure,	soun	d, vibr	ation,	flow	etc		
Mapping	betw	veen (Cos, I	POs a	nd P	SOs									1
CO		1	1			<u> </u>	<u>PO</u>							PSC	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	FMPE 506
Course title	System engineering and productivity
Course credit	2+1
Objective of Course	 To develop knowledge and skill for technical education and research in system engineering and productivity. To develop the ability of the students for solving solutions to problems pertaining to farm power and machinery. To strengthen the knowledge among students for Industry and R&D organizations.
Course Content	Theory
	 UNIT I System definition and concept. System engineering function, management and problems. Classification of system analysis models. Economic analysis techniques: Interest and interest estimation of single and multiple alternatives, break even analysis. UNIT II Mathematical modelling and analysis: Application of linear programming, Network theory – CPM and PERT, queuing theory and its application, assignment & transportation models and job scheduling/ allocation for the synthesis of agriculture machine systems. UNIT II Dynamic programming, Markov chains, application of forecasting in agricultural engineering systems and products. Concept utilization and mathematical formulation of the labor, equipment and material factors affecting productivity. UNIT IV Computer use in solving problems of optimization, writing of algorithms for problem solutions and decision-making.
	Extensive practice on the packages mentioned in theory.
References:	 Danovan SS. 2000. System Programming. Tata McGraw. Gillett G. 2001. Introduction to Operations Research. Tata McGraw Hill. Grawham WJ & Vincent TL. 1993. Modern Control System Analysis and Design. John Wiley & Sons. Lewis FL & Syrmos VL. 1995. Optimum Control. 2nd Ed. John Wiley & Sons. Loomba D. 2000. Linear Programming. Tata McGraw. Puttaswamaiah K. 2001. Cost Benefits Analysis. Oxford & IBH.
Course Outcomes	At the end of the course, learners will be able CO1: To acquaint and equip with concept of system and system analysis.
	 CO2: Acquire knowledge on basics of mathematical modeling and analysis CO3: Understand the dynamic programming and Markov chain application.

				CO			-	cone	cept	utiliz	zation	and	l m	athem	natical
				~ ~		mulati								_	
			CO5:To solve the engineering optimization problems using												
		computers.													
Mapping between Cos, POs and PSOs															
CO		PO PSO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	FMPE 507
Course title	Farm machinery dynamics, noise & vibrations
Course credit	3+1
Objective of Course	 To develop knowledge and skill for technical education and research in theoretical aspects of farm machinery. To develop the ability of the students for understand the vibration and noise in farm power and machinery.
	• To strengthen the knowledge among students for Industry and
	R&D organizations.
Course Content	 Theory UNIT I Principles of soil working tools: shares, discs, shovels, sweeps and blades, rota-tillers and puddlers. UNIT II Metering of seeds and granular fertilizers with various mechanism, effect of various parameters on distribution of seed and fertilizer in seed cum fertilizer drills and planters, flow of seeds and fertilizers through tubes and boots. Kinematics of trans planters. UNIT III Theory of atomization, specific energy for atomization, electrostatic spraying and dusting, spray distribution patterns. Kinematics of reapers/harvesting machines. Theory of mechanical separation of grains from ear heads/pods. Parameters affecting performance of threshers aerodynamic properties of straw and grain mixture, theory of root crop harvesters, power requirement of various components of field machines. UNIT IV Noise and vibration theory- Definition, units and parameters of measu and their importance. Types of vibrations- free and forced, in damped without damped analysis of one, two and multiple degree of freedom and their solution using Newton's motion, energy method, longitudin transverse and torsional vibrations, Raleigh's methods, Lagrange equ UNIT V Introduction of transient vibration in systems, vibration of continuous media. Balancing of single rotating weight and number of weights in same plane and different planes. Complete balancing of reciprocating parts of engine. Practical Study of vibration measurement and analysis equipment, Study of elasticity, rigidity, and MI by free vibration test. Evaluation of
	logarithmic decrement and damping factor. Whirling of shaft. Heat motion in two pendulum system. Detailed analysis of multi- degree of freedom system.
References:	 Ballaney PL. 1974. <i>Theory of Machines</i>. Khanna Publ. Bosoi ESO, Verniaev V, Smirnov & Sultan-Shakh EG. 1990. <i>Theory, Construction and Calculations of Agricultural Machinery</i>. Vol. I. Oxonian Press Pvt. Ltd. No.56.

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$															
Course O	utcon	ies		CO1 CO2	: To a : Acq	.cquai uire k	int an	d equ edge	ip wit on se	th prin ed and		e of soil zer me			ools.
				Mc0 • Kep Maa • Kle The and • Maa • Maa • Maa • Maa • Maa • Mea Mc0 • Nar Rot • Sriv IBH • Stei Inte • Wil	Graw oner F chiner nin N ory of the C cples. rovito Graw tov P terdar vastav I. dal.19 rnatio	Hill. RA, F (y. AV I, Pop <i>of Op</i> <i>Condit</i> 1969. (1969. Conditional S. 19 n. AC. 986. Onal & T The	Bainer VI Pu pov II eratic tion o Dync 198 85.Di 2001 2001 Intro & ELE	r R & bl. Co F & S ons, O f Ope unics 6. El isc So 1. Elo oducti 3S Ed	2 Ber 5. akoon Comperation of Ma lemen bil Wo ement con ta l.	rger E n VA. uting n. Am achine ts of orking s of I o Me	L. 197 1987. and C rind Pu es. McC Vibra Imple Farm 1 cchanic	78. Pri Agricu Control ubl. Co Graw H tion A tion A ments. Machin val Vii vation v	nciple ltura ling Hill. nalys A. A hery. bratic	es of l Mad Para is. 2 Ba Oxf ons.	[°] <i>Farm</i> <i>chines.</i> <i>meters</i> nd Ed. lkema, ford & Wiley
				 Body. Engineering Principles of Agricultural Machines. ASAE Text Book No. 6. Grover GK. 1996. Mechanical Vibrations. New Chand & Bros., Roorkee. Harris CM & Crede CE. 1976. Shock and Vibration Hand Book. McGraw Hill. Holowenko AR. 1967. Dynamics of Machinery. McGraw Hill. Kelly SG. 2000. Fundamental of Mechanical Vibration. 2nd Ed. 											

Course cod	le			FMP	E 508	8										
Course title	e			Trac	tor d	esign										
Course cre	edit			2+1												
Objective of	of C	ours	e	res	earch	in de	esign	of tra	ctor.						n and	
										studer ystem		idersta	and la	itest d	lesign	
				• To	stren	gther	the l	know		-		dents	for In	dustr	y and	
					zD or	ganiz	ations	5.								
Course Co	nter	nt			Theory LINIT I											
					UNIT I Technical specifications of tractors available in India, modern											
						-										
				trends in tractor design and development, special design fea of tractors in relation to Indian agriculture. UNIT II											atures	
						offo	oting	dagia	n of	tractor	ongi	no on	1 that	r colo	ction.	
							-	-			-				stems	
															em &	
								-		-		-		•	ntrols.	
					select		,				1					
				UNI	ΓIII											
				Mech	nanics	of tr	actor.	Com	puter	aided	l desig	gn and	its a	pplica	ation	
				-	ricult	ural ti	ractor	S								
				Prac				_						_		
						•			•			ned ir				
References	5:			Ha	11.				0	<u>.</u>		Ũ		•	nan &	
					ger E <i>ir Po</i> v		-				oen E	C. 196	67. Tr	actor	s and	
				• Ma	cmill	an F	RH.Th	ne M	lecha	nics	of T	ractor	r _	Imple	ement	
					<i>form</i> lbour		The	ory a	ind V	Vorke	d Exe	ample	. Un	iversi	ty of	
				• Ma	leev	VL.	1945	. Inte	ernal	Com	bustic	on En	gines	. Mc	Graw	
				Hil	1.											
				• Ral	ph A	lcock	1986	. Trae	ctor I	mplen	nents ,	Systen	n. AV	'I Pub	ol. Co	
Course Ou	itcoi	mes						· ·		s will						
				CO1		-		-	-		ne mo	dern	trends	s in t	ractor	
				a a a		0	ind de	-							0	
				CO2		-		-		-		s affe	cting	desig	gn of	
				CO3						select		mnon	ente	and to	ractor	
				005		stems			CICIL	ciigii		mpon	cints a	unu l		
				CO4	•			ipute	aide	ed de	sign a	and it	s apn	licati	on in	
							ural tr	-			0	-	rr			
				<u>CO5</u>	-					hanics	s of tra	actor.				
Mapping b	oetw	een (Cos,	POs a	nd PS	SOs										
СО			1				0							PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1																

CO2								
CO3								
CO4								
CO5								

Imanagement Course credit 2+1	Course code	FMPE 509										
Course credit 2+1 Objective of Course • To develop knowledge and skill for technical education and research in operation research for farm machinery management. • To develop the ability of the students for solving solutions to problems pertaining to farm power and machinery management. • To strengthen the knowledge among students for Industry and R&D organizations. Course Content Theory UNIT I Nature, methods, impact and scope of operational research; linear programming and integer programming models and applications. Network terminology, shortest route and minimal spanning tree problems, maximal flow problem, project planning and control with PERT and CPM. UNIT II System approach in farm machinery management and application of programming techniques to the problems of farm power and machinery selection. UNIT III Maintenance and scheduling of operations. Replacement of old machines, repair and maintenance of agricultural machinery, inventory control of spare parts, work study, productivity, method study. First order Markov chains and their applications in sales forecasting and in problems of inventory control and modelling of workshop processes and quality control UNIT IV Time and motion study. Man-machine task system in farm operations, planning of work system in agriculture. Computer application is selection of power units and to optimize mechanization system. Practical Management problems and case studies. References: • Caryille LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service	Course title	Operations research in farm power & machinery										
Objective of Course • To develop knowledge and skill for technical education and research in operation research for farm machinery management. • To develop the ability of the students for solving solutions to problems pertaining to farm power and machinery management. • To strengthen the knowledge among students for Industry and R&D organizations. Course Content Theory UNIT I Nature, methods, impact and scope of operational research; linear programming and integer programming models and applications. Network terminology, shortest route and minimal spanning tree problems, maximal flow problem, project planning and control with PERT and CPM. UNIT II System approach in farm machinery management and application of programming techniques to the problems of farm power and machinery selection. UNIT III Maintenance and scheduling of operations. Replacement of old machines, repair and maintenance of agricultural machinery, inventory control of spare parts, work study, productivity, method study. First order Markov chains and their applications in sales forecasting and in problems of inventory control and modelling of workshop processes and quality control UNIT IV Time and motion study. Man-machine task system in farm operations, planning of work system in agriculture. Computer application in selection of power units and to optimize mechanization system. Practical Management problems and case studies. • Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. • Culpin C & Claude S. 1950.Farm Mec		management										
research in operation research for farm machinery management. • To develop the ability of the students for solving solutions to problems pertaining to farm power and machinery management. • To strengthen the knowledge among students for Industry and R&D organizations. Course Content Theory UNIT I Nature, methods, impact and scope of operational research; linear programming and integer programming models and applications. Network terminology, shortest route and minimal spanning tree problems, maximal flow problem, project planning and control with PERT and CPM. UNIT II System approach in farm machinery management and application of programming techniques to the problems of farm power and machinery selection. UNIT III Maintenance and scheduling of operations. Replacement of old machines, repair and maintenance of agricultural machinery, inventory control of spare parts, work study, productivity, method study. First order Markov chains and their applications in sales forecasting and in problems of inventory control and modelling of workshop processes and quality control UNIT IV Time and motion study. Man-machine task system in farm operations, planning of work system in agriculture. Computer application is selection of power units and to optimize mechanization system. Practical Management problems and case studies. References: • Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. • Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. • Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. • Culpin C & Claude S. 1950.Farm Mechanization; • FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. • Hunt D. 1977.Farm Power and Machinery Management.	Course credit	2+1										
research in operation research for farm machinery management. • To develop the ability of the students for solving solutions to problems pertaining to farm power and machinery management. • To strengthen the knowledge among students for Industry and R&D organizations. Course Content Theory UNIT I Nature, methods, impact and scope of operational research; linear programming and integer programming models and applications. Network terminology, shortest route and minimal spanning tree problems, maximal flow problem, project planning and control with PERT and CPM. UNIT II System approach in farm machinery management and application of programming techniques to the problems of farm power and machinery selection. UNIT II Maintenance and scheduling of operations. Replacement of old machines, repair and maintenance of agricultural machinery, inventory control of spare parts, work study, productivity, method study. First order Markov chains and their applications in sales forecasting and in problems of inventory control and modelling of workshop processes and quality control UNIT IV Time and motion study. Man-machine task system in farm operations, planning of work system in agriculture. Computer application is selection of power units and to optimize mechanization system. Practical Management problems and case studies. • Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. • Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. • Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. • Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. • Culpin C & Claude S. 1950.Farm Mechanization; • FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. • Hunt D. 1977.Farm Power and Machinery Management.	Objective of Course	• To develop knowledge and skill for technical education and										
 To develop the ability of the students for solving solutions to problems pertaining to farm power and machinery management. To strengthen the knowledge among students for Industry and R&D organizations. Course Content Theory UNIT I Nature, methods, impact and scope of operational research; linear programming and integer programming models and applications. Network terminology, shortest route and minimal spanning tree problems, maximal flow problem, project planning and control with PERT and CPM. UNIT II System approach in farm machinery management and application of programming techniques to the problems of farm power and machinery selection. UNIT III Maintenance and scheduling of operations. Replacement of old machines, repair and maintenance of agricultural machinery, inventory control of spare parts, work study, productivity, method study. First order Markov chains and their applications in sales forecasting and in problems of inventory control and modelling of workshop processes and quality control UNIT IV Time and motion study. Man-machine task system in farm operations, planning of work system in agriculture. Computer application in selection of power units and to optimize mechanization system. References: Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. Culpin C & Claude S. 1950.Farm Mechanization Selection of Mechanization Inputs. Agricultural Service Bulletin. Hunt D. 1977.Farm Power and Machinery Management. 												
 To develop the ability of the students for solving solutions to problems pertaining to farm power and machinery management. To strengthen the knowledge among students for Industry and R&D organizations. Course Content Theory UNIT I Nature, methods, impact and scope of operational research; linear programming and integer programming models and applications. Network terminology, shortest route and minimal spanning tree problems, maximal flow problem, project planning and control with PERT and CPM. UNIT II System approach in farm machinery management and application of programming techniques to the problems of farm power and machinery selection. UNIT III Maintenance and scheduling of operations. Replacement of old machines, repair and maintenance of agricultural machinery, inventory control of spare parts, work study, productivity, method study. First order Markov chains and their applications in sales forecasting and in problems of inventory control and modelling of workshop processes and quality control UNIT IV Time and motion study. Man-machine task system in farm operations, planning of work system in agriculture. Computer application in selection of power units and to optimize mechanization system. References: Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. Culpin C & Claude S. 1950.Farm Mechanization, Crosby Lockwood & Sons. 												
problems pertaining to farm power and machinery management. • To strengthen the knowledge among students for Industry and R&D organizations. Course Content Theory UNIT I Nature, methods, impact and scope of operational research; linear programming and integer programming models and applications. Network terminology, shortest route and minimal spanning tree problems, maximal flow problem, project planning and control with PERT and CPM. UNIT II System approach in farm machinery management and application of programming techniques to the problems of farm power and machinery selection. UNIT III Maintenance and scheduling of operations. Replacement of old machines, repair and maintenance of agricultural machinery, inventory control of spare parts, work study, productivity, method study. First order Markov chains and their applications in sales forecasting and in problems of inventory control and modelling of workshop processes and quality control UNIT IV Time and motion study. Man-machine task system in farm operations, planning of work system in agriculture. Computer application in selection of power units and to optimize mechanization system. Practical Management problems and case studies. References: • Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. • Culpin C & Claude S. 1958.Profitable Farm Mechanization. Crosby Lockwood & Sons. • • FAO. 198		•										
management. • To strengthen the knowledge among students for Industry and R&D organizations. Course Content Theory UNIT I Nature, methods, impact and scope of operational research; linear programming and integer programming models and applications. Network terminology, shortest route and minimal spanning tree problems, maximal flow problem, project planning and control with PERT and CPM. UNIT II System approach in farm machinery management and application of programming techniques to the problems of farm power and machinery selection. UNIT III Maintenance and scheduling of operations. Replacement of old machines, repair and maintenance of agricultural machinery, inventory control of spare parts, work study, productivity, method study. First order Markov chains and their applications in sales forecasting and in problems of inventory control and modelling of workshop processes and quality control UNIT IV Time and motion study. Man-machine task system in farm operations, planning of work system in agriculture. Computer application in selection of power units and to optimize mechanization system. Practical Management problems and case studies. References: • Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. • Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. • Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. • Culpin C & Claude S. 1950.Farm Mechanization, Crosby Lockwood & Sons. • FAO. 1984.Agricultural Engineering in Development: Sele		1 0										
• To strengthen the knowledge among students for Industry and R&D organizations. Course Content Theory UNIT 1 Nature, methods, impact and scope of operational research; linear programming and integer programming models and applications. Network terminology, shortest route and minimal spanning tree problems, maximal flow problem, project planning and control with PERT and CPM. UNIT II System approach in farm machinery management and application of programming techniques to the problems of farm power and machinery selection. UNIT II Maintenance and scheduling of operations. Replacement of old machines, repair and maintenance of agricultural machinery, inventory control of spare parts, work study, productivity, method study. First order Markov chains and their applications in sales forecasting and in problems of inventory control and modelling of workshop processes and quality control UNIT IV Time and motion study. Man-machine task system in farm operations, planning of work system in agriculture. Computer application in selection of power units and to optimize mechanization system. Practical Management problems and case studies. References: • Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. • Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. • Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. • Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. • Culpin C & Claude S. 1958.Profitable Farm		· · · · · ·										
R&D organizations. Course Content Theory UNIT I Nature, methods, impact and scope of operational research; linear programming and integer programming models and applications. Network terminology, shortest route and minimal spanning tree problems, maximal flow problem, project planning and control with PERT and CPM. UNIT II System approach in farm machinery management and application of programming techniques to the problems of farm power and machinery selection. UNIT III Maintenance and scheduling of operations. Replacement of old machines, repair and maintenance of agricultural machinery, inventory control of spare parts, work study, productivity, method study. First order Markov chains and their applications in sales forecasting and in problems of inventory control and modelling of workshop processes and quality control UNIT IV Time and motion study. Man-machine task system in farm operations, planning of work system in agriculture. Computer application in selection of power units and to optimize mechanization system. Practical Management problems and case studies. References: • Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. • Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. • Culpin C & Claude S. 1968.Profitable Farm Mechanization. Crosby Lockwood & Sons. • FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. • Hunt D. 1977.Farm Power and Machinery Management.		-										
Course Content Theory UNIT I Nature, methods, impact and scope of operational research; linear programming and integer programming models and applications. Network terminology, shortest route and minimal spanning tree problems, maximal flow problem, project planning and control with PERT and CPM. UNIT II System approach in farm machinery management and application of programming techniques to the problems of farm power and machinery selection. UNIT III Maintenance and scheduling of operations. Replacement of old machines, repair and maintenance of agricultural machinery, inventory control of spare parts, work study, productivity, method study. First order Markov chains and their applications in sales forecasting and in problems of inventory control and modelling of workshop processes and quality control UNIT IV Time and motion study. Man-machine task system in farm operations, planning of work system in agriculture. Computer application in selection of power units and to optimize mechanization system. Practical Management problems and case studies. References: • Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. • Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. • Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. DecKowod & Sons. • FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. • Hunt D. 1977.Farm Power and Machinery Management.												
UNIT I Nature, methods, impact and scope of operational research; linear programming and integer programming models and applications. Network terminology, shortest route and minimal spanning tree problems, maximal flow problem, project planning and control with PERT and CPM. UNIT II System approach in farm machinery management and application of programming techniques to the problems of farm power and machinery selection. UNIT III Maintenance and scheduling of operations. Replacement of old machines, repair and maintenance of agricultural machinery, inventory control of spare parts, work study, productivity, method study. First order Markov chains and their applications in sales forecasting and in problems of inventory control and modelling of workshop processes and quality control UNIT IV Time and motion study. Man-machine task system in farm operations, planning of work system in agriculture. Computer application in selection of power units and to optimize mechanization system. Practical Management problems and case studies. References: • Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. • Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. • Culpin C & Claude S. 1950.Form Mechanization; Costs and Methods. McGraw Hill. • Culpin C & Claude S. 1950.Form fiable Farm Mechanization. Crosby Lockwood & Sons. • FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin.	Course Content											
References: Nature, methods, impact and scope of operational research; linear programming and integer programming models and applications. Network terminology, shortest route and minimal spanning tree problems, maximal flow problem, project planning and control with PERT and CPM. UNIT II System approach in farm machinery management and application of programming techniques to the problems of farm power and machinery selection. UNIT III Maintenance and scheduling of operations. Replacement of old machines, repair and maintenance of agricultural machinery, inventory control of spare parts, work study, productivity, method study. First order Markov chains and their applications in sales forecasting and in problems of inventory control and modelling of workshop processes and quality control UNIT IV Time and motion study. Man-machine task system in farm operations, planning of work system in agriculture. Computer application is selection of power units and to optimize mechanization system. Practical Management problems and case studies. References: • Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. • Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. • Culpin C & Claude S. 1968.Profitable Farm Mechanization. Crosby Lockwood & Sons. • FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. • Hunt D. 1977.Farm Power and Machinery Management.		•										
linear programming and integer programming models and applications. Network terminology, shortest route and minimal spanning tree problems, maximal flow problem, project planning and control with PERT and CPM. UNIT II System approach in farm machinery management and application of programming techniques to the problems of farm power and machinery selection. UNIT II Maintenance and scheduling of operations. Replacement of old machines, repair and maintenance of agricultural machinery, inventory control of spare parts, work study, productivity, method study. First order Markov chains and their applications in sales forecasting and in problems of inventory control uNIT IV Time and motion study. Man-machine task system in farm operations, planning of work system in agriculture. Computer application in selection of power units and to optimize mechanization system. Practical Management problems and case studies.References:• Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. • Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. • Culpin C & Claude S. 1968.Profitable Farm Mechanization. Crosby Lockwood & Sons. • FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. • Hunt D. 1977.Farm Power and Machinery Management.												
applications. Network terminology, shortest route and minimal spanning tree problems, maximal flow problem, project planning and control with PERT and CPM. UNIT II System approach in farm machinery management and application of programming techniques to the problems of farm power and machinery selection. UNIT III Maintenance and scheduling of operations. Replacement of old machines, repair and maintenance of agricultural machinery, inventory control of spare parts, work study, productivity, method study. First order Markov chains and their applications in sales forecasting and in problems of inventory control and modelling of workshop processes and quality control UNIT IV Time and motion study. Man-machine task system in farm operations, planning of work system in agriculture. Computer application in selection of power units and to optimize mechanization system. Practical Management problems and case studies.References:• Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. • Culpin C & Claude S. 1950.Farm Machinery. Louisiana Cooperative Extn. Service Publication. • Culpin C & Claude S. 1968.Profitable Farm Mechanization. Crosby Lockwood & Sons. • FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. • Hunt D. 1977.Farm Power and Machinery Management.												
 spanning tree problems, maximal flow problem, project planning and control with PERT and CPM. UNIT II System approach in farm machinery management and application of programming techniques to the problems of farm power and machinery selection. UNIT III Maintenance and scheduling of operations. Replacement of old machines, repair and maintenance of agricultural machinery, inventory control of spare parts, work study, productivity, method study. First order Markov chains and their applications in sales forecasting and in problems of inventory control and modelling of workshop processes and quality control UNIT IV Time and motion study. Man-machine task system in farm operations, planning of work system in agriculture. Computer application in selection of power units and to optimize mechanization system. Practical Management problems and case studies. References: Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. Culpin C & Claude S. 1968.Profitable Farm Mechanization. Crosby Lockwood & Sons. FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. Hunt D. 1977.Farm Power and Machinery Management. 												
and control with PERT and CPM. UNIT II System approach in farm machinery management and application of programming techniques to the problems of farm power and machinery selection. UNIT III Maintenance and scheduling of operations. Replacement of old machines, repair and maintenance of agricultural machinery, inventory control of spare parts, work study, productivity, method study. First order Markov chains and their applications in sales forecasting and in problems of inventory control and modelling of workshop processes and quality control UNIT IV Time and motion study. Man-machine task system in farm operations, planning of work system in agriculture. Computer application in selection of power units and to optimize mechanization system. Practical Management problems and case studies. References: Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. Culpin C & Claude S. 1968.Profitable Farm Mechanization. Crosby Lockwood & Sons. FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. Hunt D. 1977.Farm Power and Machinery Management. 												
 UNIT II System approach in farm machinery management and application of programming techniques to the problems of farm power and machinery selection. UNIT III Maintenance and scheduling of operations. Replacement of old machines, repair and maintenance of agricultural machinery, inventory control of spare parts, work study, productivity, method study. First order Markov chains and their applications in sales forecasting and in problems of inventory control and modelling of workshop processes and quality control UNIT IV Time and motion study. Man-machine task system in farm operations, planning of work system in agriculture. Computer application in selection of power units and to optimize mechanization system. Practical Management problems and case studies. References: Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. Culpin C & Claude S. 1968.Profitable Farm Mechanization. Crosby Lockwood & Sons. FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. Hunt D. 1977.Farm Power and Machinery Management. 												
System approach in farm machinery management and application of programming techniques to the problems of farm power and machinery selection. UNIT III Maintenance and scheduling of operations. Replacement of old machines, repair and maintenance of agricultural machinery, inventory control of spare parts, work study, productivity, method study. First order Markov chains and their applications in sales forecasting and in problems of inventory control and modelling of workshop processes and quality control UNIT IV Time and motion study. Man-machine task system in farm operations, planning of work system in agriculture. Computer application in selection of power units and to optimize mechanization system. Practical Management problems and case studies.References:• Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. • Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. • Culpin C & Claude S. 1968.Profitable Farm Mechanization. Crosby Lockwood & Sons. • FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. • Hunt D. 1977.Farm Power and Machinery Management.												
application of programming techniques to the problems of farm power and machinery selection. UNIT III Maintenance and scheduling of operations. Replacement of old machines, repair and maintenance of agricultural machinery, inventory control of spare parts, work study, productivity, method study. First order Markov chains and their applications in sales forecasting and in problems of inventory control and modelling of workshop processes and quality control UNIT IV Time and motion study. Man-machine task system in farm operations, planning of work system in agriculture. Computer application in selection of power units and to optimize mechanization system. Practical Management problems and case studies.References:• Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. • Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill.• Culpin C & Claude S. 1968.Profitable Farm Mechanization. Crosby Lockwood & Sons.• FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. • Hunt D. 1977.Farm Power and Machinery Management.												
power and machinery selection.UNIT IIIMaintenance and scheduling of operations. Replacement of old machines, repair and maintenance of agricultural machinery, inventory control of spare parts, work study, productivity, method study. First order Markov chains and their applications in sales forecasting and in problems of inventory control and modelling of workshop processes and quality control UNIT IV Time and motion study. Man-machine task system in farm operations, planning of work system in agriculture. Computer application in selection of power units and to optimize mechanization system.Practical Management problems and case studies.References:• Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. • Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill.• Culpin C & Claude S. 1968.Profitable Farm Mechanization. Crosby Lockwood & Sons. • FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. • Hunt D. 1977.Farm Power and Machinery Management.												
 UNIT III Maintenance and scheduling of operations. Replacement of old machines, repair and maintenance of agricultural machinery, inventory control of spare parts, work study, productivity, method study. First order Markov chains and their applications in sales forecasting and in problems of inventory control and modelling of workshop processes and quality control UNIT IV Time and motion study. Man-machine task system in farm operations, planning of work system in agriculture. Computer application in selection of power units and to optimize mechanization system. Practical Management problems and case studies. Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. Culpin C & Claude S. 1968.Profitable Farm Mechanization. Crosby Lockwood & Sons. FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. Hunt D. 1977.Farm Power and Machinery Management. 												
 Maintenance and scheduling of operations. Replacement of old machines, repair and maintenance of agricultural machinery, inventory control of spare parts, work study, productivity, method study. First order Markov chains and their applications in sales forecasting and in problems of inventory control and modelling of workshop processes and quality control UNIT IV Time and motion study. Man-machine task system in farm operations, planning of work system in agriculture. Computer application in selection of power units and to optimize mechanization system. Practical Management problems and case studies. References: Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. Culpin C & Claude S. 1968.Profitable Farm Mechanization. Crosby Lockwood & Sons. FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. Hunt D. 1977.Farm Power and Machinery Management. 		-										
 machines, repair and maintenance of agricultural machinery, inventory control of spare parts, work study, productivity, method study. First order Markov chains and their applications in sales forecasting and in problems of inventory control and modelling of workshop processes and quality control UNIT IV Time and motion study. Man-machine task system in farm operations, planning of work system in agriculture. Computer application in selection of power units and to optimize mechanization system. Practical Management problems and case studies. References: Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. Culpin C & Claude S. 1968.Profitable Farm Mechanization. Crosby Lockwood & Sons. FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. Hunt D. 1977.Farm Power and Machinery Management. 												
 inventory control of spare parts, work study, productivity, method study. First order Markov chains and their applications in sales forecasting and in problems of inventory control and modelling of workshop processes and quality control UNIT IV Time and motion study. Man-machine task system in farm operations, planning of work system in agriculture. Computer application in selection of power units and to optimize mechanization system. Practical Management problems and case studies. References: Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. Culpin C & Claude S. 1968.Profitable Farm Mechanization. Crosby Lockwood & Sons. FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. Hunt D. 1977.Farm Power and Machinery Management. 												
 method study. First order Markov chains and their applications in sales forecasting and in problems of inventory control and modelling of workshop processes and quality control UNIT IV Time and motion study. Man-machine task system in farm operations, planning of work system in agriculture. Computer application in selection of power units and to optimize mechanization system. Practical Management problems and case studies. Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. Culpin C & Claude S. 1968.Profitable Farm Mechanization. Crosby Lockwood & Sons. FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. Hunt D. 1977.Farm Power and Machinery Management. 												
 in sales forecasting and in problems of inventory control and modelling of workshop processes and quality control UNIT IV Time and motion study. Man-machine task system in farm operations, planning of work system in agriculture. Computer application in selection of power units and to optimize mechanization system. Practical Management problems and case studies. References: Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. Culpin C & Claude S. 1968.Profitable Farm Mechanization. Crosby Lockwood & Sons. FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. Hunt D. 1977.Farm Power and Machinery Management. 												
 modelling of workshop processes and quality control UNIT IV Time and motion study. Man-machine task system in farm operations, planning of work system in agriculture. Computer application in selection of power units and to optimize mechanization system. Practical Management problems and case studies. References: Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. Culpin C & Claude S. 1968.Profitable Farm Mechanization. Crosby Lockwood & Sons. FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. Hunt D. 1977.Farm Power and Machinery Management. 												
 UNIT IV Time and motion study. Man-machine task system in farm operations, planning of work system in agriculture. Computer application in selection of power units and to optimize mechanization system. Practical Management problems and case studies. References: Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. Culpin C & Claude S. 1968.Profitable Farm Mechanization. Crosby Lockwood & Sons. FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. Hunt D. 1977.Farm Power and Machinery Management. 												
 Time and motion study. Man-machine task system in farm operations, planning of work system in agriculture. Computer application in selection of power units and to optimize mechanization system. Practical Management problems and case studies. References: Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. Culpin C & Claude S. 1968.Profitable Farm Mechanization. Crosby Lockwood & Sons. FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. Hunt D. 1977.Farm Power and Machinery Management. 												
 operations, planning of work system in agriculture. Computer application in selection of power units and to optimize mechanization system. Practical Management problems and case studies. References: Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. Culpin C & Claude S. 1968.Profitable Farm Mechanization. Crosby Lockwood & Sons. FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. Hunt D. 1977.Farm Power and Machinery Management. 												
application in selection of power units and to optimize mechanization system.Practical Management problems and case studies.References:• Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. • Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. • Culpin C & Claude S. 1968.Profitable Farm Mechanization. Crosby Lockwood & Sons. • FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. • Hunt D. 1977.Farm Power and Machinery Management.												
 mechanization system. Practical Management problems and case studies. References: Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. Culpin C & Claude S. 1968.Profitable Farm Mechanization. Crosby Lockwood & Sons. FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. Hunt D. 1977.Farm Power and Machinery Management. 												
Practical Management problems and case studies.References:• Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. • Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. • Culpin C & Claude S. 1968.Profitable Farm Mechanization. Crosby Lockwood & Sons. • FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. • Hunt D. 1977.Farm Power and Machinery Management.												
Management problems and case studies.References:• Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. • Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. • Culpin C & Claude S. 1968.Profitable Farm Mechanization. Crosby Lockwood & Sons. • FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. • Hunt D. 1977.Farm Power and Machinery Management.												
 References: Carville LA. 1980. Selecting Farm Machinery. Louisiana Cooperative Extn. Service Publication. Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. Culpin C & Claude S. 1968.Profitable Farm Mechanization. Crosby Lockwood & Sons. FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. Hunt D. 1977.Farm Power and Machinery Management. 												
 Cooperative Extn. Service Publication. Culpin C & Claude S. 1950.<i>Farm Mechanization; Costs and Methods</i>. McGraw Hill. Culpin C & Claude S. 1968.<i>Profitable Farm Mechanization</i>. Crosby Lockwood & Sons. FAO. 1984.Agricultural <i>Engineering in Development: Selection of Mechanization Inputs</i>. Agricultural Service Bulletin. Hunt D. 1977.<i>Farm Power and Machinery Management</i>. 	Defenences											
 Culpin C & Claude S. 1950.Farm Mechanization; Costs and Methods. McGraw Hill. Culpin C & Claude S. 1968.Profitable Farm Mechanization. Crosby Lockwood & Sons. FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. Hunt D. 1977.Farm Power and Machinery Management. 	References:	÷ ,										
 Methods. McGraw Hill. Culpin C & Claude S. 1968.Profitable Farm Mechanization. Crosby Lockwood & Sons. FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. Hunt D. 1977.Farm Power and Machinery Management. 		-										
 Culpin C & Claude S. 1968.Profitable Farm Mechanization. Crosby Lockwood & Sons. FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. Hunt D. 1977.Farm Power and Machinery Management. 		-										
 Crosby Lockwood & Sons. FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. Hunt D. 1977.Farm Power and Machinery Management. 												
 FAO. 1984.Agricultural Engineering in Development: Selection of Mechanization Inputs. Agricultural Service Bulletin. Hunt D. 1977.Farm Power and Machinery Management. 		-										
 Selection of Mechanization Inputs. Agricultural Service Bulletin. Hunt D. 1977.Farm Power and Machinery Management. 		-										
Bulletin.Hunt D. 1977.Farm Power and Machinery Management.		• FAO. 1984.Agricultural <i>Engineering in Development:</i>										
• Hunt D. 1977. Farm Power and Machinery Management.		Selection of Mechanization Inputs. Agricultural Service										
		Bulletin.										
		• Hunt D. 1977. Farm Power and Machinery Management.										
• Waters WK. 1980. Farm Machinery Management Guide.		•										

				P	ennsy	lvan	ia Ag	ric. E	xtn. S	Service	e Spl.	Circu	lar N	o. 199	92
Course C)utco	mes		At th	ne end	l of th	ne cou	urse, l	earne	ers will	be al	ole			
				CO1 : To acquaint and equip with concept of operational research.											
				CO2		-		owled opera	0		sics	of m	ainte	enance	e and
				CO3	: Un		and	-			roach	in	farm	mac	hinery
	CO4: To get knowledge of man-machine task system.														
	CO5 : To solve the problems of farm power and machiner														hinery
					sele	ction		•							·
Mapping	g betv	veen (Cos,	POs a	nd P	SOs									
CO]	PO							PSC)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	FMPE 510
Course title	ERGONOMICS AND SAFETY IN FARM OPERATIONS
Course credit	2+1
Objective of Course	• To develop knowledge and skill of ergonomic aspects for

	technical advection and research in design of form nerver and
	technical education and research in design of farm power and
	machinery.
	• To develop the ability of the students for considering human
	factors in farm power and machinery design.
	• To strengthen the knowledge among students for Industry and
	R&D organizations.
Course Content	Theory
	UNIT I
	Concept and design criteria for optimum mutual adjustment of
	man and his work: Importance of ergonomics and its application
	in agriculture, liberation and transfer of energy in human body,
	concept of indirect calorimeter, work physiology in various
	agricultural tasks.
	UNIT II
	Physiological stress indices and their methods of measurement:
	Mechanical efficiency of work, fatigue and shift work.
	UNIT III
	Anthropometry and Biomechanics: Anthropometric data and
	measurement techniques, joint movement and method of
	measurement, analysis and application of anthropometric data,
	measurement of physical and mental capacities.
	UNIT IV
	Human limitations in relation to stresses and demands of
	working environments. Mechanical environment; noise and
	vibration and their physiological effects, thermal environment;
	heat stress, thermal comfort, effect on performance and behavior,
	field of vision, color discrimination, general guidelines for
	designing visual display, safety standards at work place during
	various farm operations and natural hazards on the farm. Farm
	safety legislation.
	UNIT V
	Man-machine system concept. Human factors in adjustment of
	man and his work. Design aspects of foot and hand controls on
	tractors and farm equipment. Design of operator's seat for
	tractors and agricultural equipment
	Practical
	Laboratory experiments on measurement of physical and mental
	capacities and limitations of human-being in relation to the stress
	and environment, anthropometric measurements, study of human
	response to dust, noise and vibrations, case studies on
	ergonomics.
References:	Bridger RS. 1995. Introduction to Ergonomics. McGraw Hill.
	Charles D Reese. 2001. Accident / Incident Prevention
	<i>Techniques</i> . Taylor & Francis.
	• Gavriel Salvendy. 1997. Hand Book of Human Factors and
	Ergonomics. John Wiley & Sons.
	•
	• Kromer KHE. 2001. Ergonomics. Prentice Hall. Mathews J & Knight AA 1071 Ergonomics in Agricultural Design
	Knight AA.1971. Ergonomics in Agricultural Design.
	National Institute of Agric. Engineering, Wrest Park Silsoe,
	Bedford.

Course O	,														Lea & ier.
	 CO1: To acquaint and equip with ergonomic aspects in fa power and machinery design. CO2: To get acquaint with physiological stress indices. CO3: Acquire knowledge on anthropometry and biomechanic CO4: To know human limitations in relation to work environments. CO5: To get used to man-machine concept in designing. 													nics.	
Mapping	betw	veen (Cos, I			-					^				
CO							0							PSO)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	FMPE 511
Course title	Engineering properties of biological materials
Course credit	2+1
Objective of Course	 To develop knowledge and skill of measurement of engineering properties for technical education and research in biological material handling equipment. To develop the ability of the students for considering engineering properties in farm power and machinery design. To strengthen the knowledge among students for Industry and

	R&D organizations.
Course Content	Theory
	 UNIT I Physical characteristics of different food grains, fruits and vegetables; Shape and size, description of shape and size, volume and density, porosity, surface area. Rheology; ASTM standard, terms, physical state of materials, classical ideal material, rheological models and equations, viscoelasticity, creep-stress relaxation, Non Newtonian fluid and viscometry, rheological properties; force, deformation, stress, strain, elastic, plastic behaviour. UNIT II Contact stresses between bodies, Hertz problems, firmness and hardness, mechanical damage, dead load and impact damage, vibration damage, friction, effect of load, sliding velocity, temperature, water film and surface roughness. Friction in agricultural materials, rolling resistance, angle of internal friction, angle of repose, flow of bulk granular materials, aero dynamics of agricultural products, drag coefficients, terminal velocity.
	 UNIT III Thermal properties: Specific heat, thermal conductivity, thermal diffusivity, methods of determination, steady state and transient heat flow. Electrical properties; Dielectric loss factor, loss tangent, A.C. conductivity and dielectric constant, method of determination, energy absorption from high- frequency electric field. UNIT IV Application of engineering properties in design and operation of agricultural equipment and structures.
	Practical Determination of physical properties like, length, breadth, thickness, surface area, bulk density, porosity, true density, coefficient of friction, angle of repose and colour for various food grains, fruits, vegetables, spices and processed foods, aerodynamic properties like terminal velocity, lift and drag force for food grains, thermal properties like thermal conductivity, thermal diffusivity and specific heat, firmness and hardness of grain, fruits and stalk, electrical properties like dielectric constant, dielectric loss factor, loss tangent and A.C. conductivity of various food materials.
References:	 Hallstrom B, Meffert HF, Th Spesis WEL & Vos G. 1983.Physical Properties of Food. Elsevier. Mohesenin NN. 1980. Physical Properties of Plant and Animal Materials. Gordon & Breach Science Publ. Mohesenin NN. 1980.<i>Thermal Properties of Foods and</i> <i>Agricultural Materials</i>. Gordon & Breach Science Publ. Peleg M & Bagelay EB. 1983. <i>Physical Properties of Foods</i>. AVI Publ. Co.

Course O	 Rao MA & Rizvi SSH. (Eds.). 1986. Engineering Propert of Foods. Marcel Dekker. Ronal Jowitt, Felix Escher, Bengt Hallsrram, Hans F, T. Meffert, Walter EC Spices & Gilbert Vox. 1983. Physi Properties of Foods. Applied Science Publ. Singhal OP & Samuel DVK. 2003. Engineering Properties Biological Materials. Saroj Prakasan Course Outcomes At the end of the course, learners will be able CO1: To acquaint and equip with physical characteristics biological materials. CO2: To get acquaint with physiological stress indices. CO3: Acquire knowledge on thermal and electrical properties. CO5: To apply engineering properties in design and operation 														F, Th. <i>nysical</i> <i>ties of</i> ics of ies.
Mapping	betw	een (Cos. I	Os a	<u> </u>	cultur S O s	ur eg	aipii	10111						
CO	~~~~	(55 u			0							PSC)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	FMPE 512
Course title	Agro-energy audit and management
Course credit	2+0
Objective of Course	 To develop knowledge and skill for technical education and research in agro energy management. To develop the ability of the students for solving solutions to problems pertaining to farm power and machinery management. To strengthen the knowledge among students for Industry and R&D organizations.
Course Content	Theory
	UNIT I
	Energy resources on the farm: conventional and non- conventional forms of energy and their use. Heat equivalents and

	Pattern of energy consumption and their constraints in production of agriculture. Direct and indirect energy. UNIT II Energy audit of production agriculture, and rural living and scope of conservation. UNIT III Identification of energy efficient machinery systems, energy losses and their management. Energy analysis techniques and methods: energy balance, output and input ratio, resource utilization, conservation of energy sources UNIT IV Energy conservation planning and practices. Energy forecasting, Energy economics, Energy pricing and incentives for energy conservation, factors effecting energy economics. Energy modeling.									
References:	 Kennedy WJ Jr. & Wayne C Turner.1984. Energy Management. Prentice Hall. Pimental D. 1980. Handbook of Energy Utilization in Agriculture. CRC Fluck RC & Baird CD.1984. Agricultural Energetics. AVI Publ. Rai GD. 1998. Non-conventional Sources of Energy. Khanna Publ. Twindal JW & Anthony D Wier 1986. Renewable Energy Sources. E & F.N Spon Ltd. Verma SR, Mittal JP & Surendra Singh 1994. Energy Management and Conservation in Agricultural Production 									
Course Outcomes	 and Food Processing. USG Publ. & Distr., Ludhiana At the end of the course, learners will be able CO1: To acquaint and equip with concept of agro energy. CO2: Acquire knowledge on basics of energy management and planning. CO3: Understand the energy audit and energy conservation techniques. CO4:To get knowledge of energy analysis techniques and methods. CO5:To know the techniques for energy forecasting and economics. 									
Mapping between Cos,										
СО	PO PSO									
1 2 3	4 5 6 7 8 9 10 11 12 1 2 3									
CO1										
CO2										
CO3										
CO4										
CO5										

Course code	FMPE 513
Course title	Design and analysis of renewable energy conversion systems
Course credit	3+0
Objective of Course	 To develop knowledge and skill for technical education and research in different energy sources. To develop the ability of the students for solving solutions to problems pertaining to farm power and machinery management. To strengthen the knowledge among students for Industry and R&D organizations.
Course Content	Theory
	UNIT I
	Energy cycle of the earth; water flow and storage; ocean currents and tides. Energy heat flow and energy storage; photosynthesis

<u></u>			conv UNI Deve esters the p UNI Desig rates blenc • B Si • C W	ersion F III elopm s in L erforn F IV gn of bio- ling oyle ustain ulp A lcGra	n proc ent au C.eng nance bio-fu gas p God able AW. w Hi	esses and use gines. e of the uel pr lants. frey. <i>Futur</i> 1991.	e of l Stud ne ou Oduc Esta 199 re. O Pri	bioga dy of tput. tion blish 96. xforc <i>ncip</i> i	as, alco f vario units: nment <i>Renev</i> l Univ les of	ohols a bus par desigr of este vable vable Energ	and pla ameter of gas erificat Energ S. gy Cor	ant oi rs for sifiers ion p gy: 1 nserve	ls, pla meas s, gas lant, f Power ation.	ant oil suring flow fuel r <i>for</i> Tata
			 Thermal Processes. John Wiley. Garg HP & Prakash J.1997. Solar Energy - Fundamental and Application. Tata McGraw Hill. Grewal NS, Ahluwalia S, Singh S & Singh G. 1997. Hand Book of Biogas Technology. Solar Energy Fundamentals and Applications. TMH New Delhi. Mittal KM. 1985. Biomass Systems: Principles & Applications. New Age International Odum HT & Odum EC. 1976. Energy Basis for Man and Nature. Tata McGraw Hill. Rao SS & Parulekar BB.1999. Non-conventional, Renewable and Conventional. Khanna Publ. 											
utcor										1/1		1		
	nes		CO1: CO2: CO3: CO4:	To conv Acqu Und bior To pr	acqu ventio iire ki lerstai nass. repare	aint onal e nowle nd th e and	and nerg edge ae co asse	equ y sou on ba onver	ip winces. asics consistent asics consistent e bio g	ith co of ener technic	onventi gy froi ques l bio fu	m bio of en	mass	
			CO1: CO2: CO3: CO4:	To conv Acqu Und bior To pr To de	acqu ventic ire ki lerstan nass. repare esign SOs	aint onal e nowle nd th e and of bio	and nerg edge ae co asse	equ y sou on ba onver	ip winces. asics consistent asics consistent e bio g	ith co of ener technic gas and	onventi gy froi ques l bio fu	m bio of en	mass. iergy	from
betwo	een C	Cos, I	CO1: CO2: CO3: CO4: <u>CO5:</u> POs a	To conv Acqu Und bior To pu <u>To do</u> nd P	acqu ventic ire kr erstar nass. repare esign SOs	aint onal e nowle nd th e and of bio	and nerg edge ie co asse <u>o-fue</u>	equ y sou on ba onver ss the l pro	ip winners. asics consistent e bio goductio	ith co of ener technic gas and on unit	gy froi ques d l bio fu s.	m bio of en iels.	mass hergy PSO	from
			CO1: CO2: CO3: CO4: <u>CO5:</u>	To conv Acqu Und bior To pr To de	acqu ventic ire ki lerstan nass. repare esign SOs	aint onal e nowle nd th e and of bio	and nerg edge ae co asse	equ y sou on ba onver	ip winces. asics consistent asics consistent e bio g	ith co of ener technic gas and	onventi gy froi ques l bio fu	m bio of en	mass. iergy	from
betwo	een C	Cos, I	CO1: CO2: CO3: CO4: <u>CO5:</u> POs a	To conv Acqu Und bior To pu <u>To do</u> nd P	acqu ventic ire kr erstar nass. repare esign SOs	aint onal e nowle nd th e and of bio	and nerg edge ie co asse <u>o-fue</u>	equ y sou on ba onver ss the l pro	ip winners. asics consistent e bio goductio	ith co of ener technic gas and on unit	gy froi ques d l bio fu s.	m bio of en iels.	mass hergy PSO	from
betwo	een C	Cos, I	CO1: CO2: CO3: CO4: <u>CO5:</u> POs a	To conv Acqu Und bior To pu <u>To do</u> nd P	acqu ventic ire kr erstar nass. repare esign SOs	aint onal e nowle nd th e and of bio	and nerg edge ie co asse <u>o-fue</u>	equ y sou on ba onver ss the l pro	ip winners. asics consistent e bio goductio	ith co of ener technic gas and on unit	gy froi ques d l bio fu s.	m bio of en iels.	mass hergy PSO	from
betwo	een C	Cos, I	CO1: CO2: CO3: CO4: <u>CO5:</u> POs a	To conv Acqu Und bior To pu <u>To do</u> nd P	acqu ventic ire kr erstar nass. repare esign SOs	aint onal e nowle nd th e and of bio	and nerg edge ie co asse <u>o-fue</u>	equ y sou on ba onver ss the l pro	ip winners. asics consistent e bio goductio	ith co of ener technic gas and on unit	gy froi ques d l bio fu s.	m bio of en iels.	mass hergy PSO	from
	es:			UNIT There energy conver- UNITDevelowestersthe p $UNITDevisionrates,blenceestersthe pUNITDesisionrates,blenceestersthe pUNITDesisionrates,blenceestersthe pUNITDesisionrates,blenceestersrates,blenceestersrates,blenceestersrates,blenceestersrates,blenceestersrates,blenceestersrates,blenceestersrates,blenceestersrates,blenceestersrates,blenceestersrates,blenceestersrates,blenceestersrates,blenceestersrates,blenceestersrates,blenceestersrates,blenceestersrates,blenceestersest$	UNIT II Thermody energy, w conversion UNIT III Developm esters in I. the perform UNIT IV Design of rates, bio- blending es: • Boyle Sustain • Culp A McGra • Duffle Therma • Garg H Applica • Grewal Book of Applica • Odum Nature • Rao SS and Co • Sukhat Collect	UNIT II Thermodynamic energy, wind e conversion prod UNIT III Development an esters in I.C.eng the performance UNIT IV Design of bio-fu- rates, bio- gas p blending es: Boyle God <i>Sustainable</i> Culp AW. McGraw Hil Duffle JA <i>Thermal Prod</i> Garg HP & <i>Application</i> . Grewal NS, <i>Book of Bio</i> , <i>Applications</i> Mittal KM <i>Applications</i> Odum HT e <i>Nature</i> . Tata Rao SS & P <i>and Convent</i> Sukhatme S <i>Collection a</i>	UNIT II Thermodynamics of energy, wind energy conversion processes UNIT III Development and use esters in I.C.engines. the performance of th UNIT IV Design of bio-fuel pr rates, bio- gas plants. blending es: Boyle Godfrey. Sustainable Futur Culp AW. 1991. McGraw Hill. Duffle JA & B Thermal Processe Garg HP & Praka Application. Tata Grewal NS, Ahlu Book of Biogas T Applications. TM Mittal KM. 1 Applications. New Odum HT & Od Nature. Tata McC Rao SS & Parule and Conventional Sukhatme SP.199 Collection and St.	 UNIT II Thermodynamics of energy, wind energy, wiconversion processes. UNIT III Development and use of the esters in I.C.engines. Studthe performance of the out UNIT IV Design of bio-fuel product rates, bio- gas plants. Establending es: Boyle Godfrey. 199 Sustainable Future. O Culp AW. 1991. Prime McGraw Hill. Duffle JA & Beckna Thermal Processes. Journal Processes. Journal Book of Biogas Techna Applications. TMH Neve Mittal KM. 1985. Applications. New Ag Odum HT & Odum Nature. Tata McGraw Rao SS & Parulekar Hand Conventional. Kh Sukhatme SP.1997. Scolection and Storage 	 UNIT II Thermodynamics of energy energy, wind energy, water conversion processes. UNIT III Development and use of bioga esters in I.C.engines. Study of the performance of the output. UNIT IV Design of bio-fuel production rates, bio- gas plants. Establish blending es: Boyle Godfrey. 1996. Sustainable Future. Oxford Culp AW. 1991. Principle McGraw Hill. Duffle JA & Beckman Thermal Processes. John V Garg HP & Prakash J.1997. Application. Tata McGraw Grewal NS, Ahluwalia S, Book of Biogas Technolog Applications. TMH New D Mittal KM. 1985. Bi Applications. New Age Int Odum HT & Odum EC. Nature. Tata McGraw Hill Rao SS & Parulekar BB.19 and Conventional. Khanna Sukhatme SP.1997. Solar Collection and Storage. 2nd 	 UNIT II Thermodynamics of energy convenergy, wind energy, water flows conversion processes. UNIT III Development and use of biogas, alcoesters in I.C.engines. Study of various the performance of the output. UNIT IV Design of bio-fuel production units: rates, bio- gas plants. Establishment blending es: Boyle Godfrey. 1996. <i>Renew Sustainable Future</i>. Oxford Univ Culp AW. 1991. <i>Principles of McGraw Hill</i>. Duffle JA & Beckman WA. <i>Thermal Processes</i>. John Wiley. Garg HP & Prakash J.1997. <i>Sola Applications</i>. TMH New Delhi. Mittal KM. 1985. <i>Biomass Applications</i>. New Age Internation Odum HT & Odum EC. 1976. <i>Nature</i>. Tata McGraw Hill. Rao SS & Parulekar BB.1999. <i>N and Conventional</i>. Khanna Publ. Sukhatme SP.1997. <i>Solar Ener</i> 	 Thermodynamics of energy conversion; energy, wind energy, water flows, heat conversion processes. UNIT III Development and use of biogas, alcohols a esters in I.C. engines. Study of various part the performance of the output. UNIT IV Design of bio-fuel production units: design rates, bio- gas plants. Establishment of establending es: Boyle Godfrey. 1996. <i>Renewable Sustainable Future</i>. Oxford Univ. Press Culp AW. 1991. <i>Principles of Energy</i> McGraw Hill. Duffle JA & Beckman WA. 1991. <i>Thermal Processes</i>. John Wiley. Garg HP & Prakash J.1997. <i>Solar Ener Application</i>. Tata McGraw Hill. Grewal NS, Ahluwalia S, Singh S & <i>Book of Biogas Technology. Solar Ener Applications</i>. TMH New Delhi. Mittal KM. 1985. <i>Biomass Syst. Applications</i>. New Age International Odum HT & Odum EC. 1976. <i>Energy Nature</i>. Tata McGraw Hill. Rao SS & Parulekar BB.1999. <i>Non-co and Conventional</i>. Khanna Publ. Sukhatme SP.1997. <i>Solar Energy - Collection and Storage</i>. 2nd Ed. Tata McGraw 2. 	 UNIT II Thermodynamics of energy conversion; conversion processes. UNIT III Development and use of biogas, alcohols and plaesters in I.C.engines. Study of various parameter the performance of the output. UNIT IV Design of bio-fuel production units: design of garates, bio- gas plants. Establishment of esterificat blending es: Boyle Godfrey. 1996. <i>Renewable Energy Sustainable Future</i>. Oxford Univ. Press. Culp AW. 1991. <i>Principles of Energy Con</i>McGraw Hill. Duffle JA & Beckman WA. 1991. <i>Solar Thermal Processes</i>. John Wiley. Garg HP & Prakash J.1997. <i>Solar Energy Fu Application</i>. Tata McGraw Hill. Mittal KM. 1985. <i>Biomass Systems: Applications</i>. New Age International Odum HT & Odum EC. 1976. <i>Energy Bas Nature</i>. Tata McGraw Hill. Rao SS & Parulekar BB.1999. <i>Non-conventio and Conventional</i>. Khanna Publ. Sukhatme SP.1997. <i>Solar Energy - Princip Collection and Storage</i>. 2nd Ed. Tata McGraw 	 UNIT II Thermodynamics of energy conversion; conversion energy, wind energy, water flows, heat, biomass, conversion processes. UNIT III Development and use of biogas, alcohols and plant oi esters in I.C.engines. Study of various parameters for the performance of the output. UNIT IV Design of bio-fuel production units: design of gasifiers rates, bio- gas plants. Establishment of esterification p blending es: Boyle Godfrey. 1996. <i>Renewable Energy: Insustainable Future</i>. Oxford Univ. Press. Culp AW. 1991. <i>Principles of Energy Conserva</i> McGraw Hill. Duffle JA & Beckman WA. 1991.<i>Solar Engi Thermal Processes</i>. John Wiley. Garg HP & Prakash J.1997. <i>Solar Energy Fundaa Application</i>. Tata McGraw Hill. Grewal NS, Ahluwalia S, Singh S & Singh G. 1 <i>Book of Biogas Technology. Solar Energy Fundaa Applications</i>. TMH New Delhi. Mittal KM. 1985. <i>Biomass Systems: Priv Applications</i>. New Age International Odum HT & Odum EC. 1976. <i>Energy Basis for Nature</i>. Tata McGraw Hill. Rao SS & Parulekar BB.1999. <i>Non-conventional</i>, <i>and Conventional</i>. Khanna Publ. Sukhatme SP.1997. <i>Solar Energy - Principles of Collection and Storage</i>. 2nd Ed. Tata McGraw Hill 	 UNIT II Thermodynamics of energy conversion; conversion of energy, wind energy, water flows, heat, biomass, etc.; conversion processes. UNIT III Development and use of biogas, alcohols and plant oils, pla esters in I.C.engines. Study of various parameters for meas the performance of the output. UNIT IV Design of bio-fuel production units: design of gasifiers, gas rates, bio- gas plants. Establishment of esterification plant, f blending es: Boyle Godfrey. 1996. <i>Renewable Energy: Power Sustainable Future</i>. Oxford Univ. Press. Culp AW. 1991. <i>Principles of Energy Conservation</i>. McGraw Hill. Duffle JA & Beckman WA. 1991.<i>Solar Engineerin Thermal Processes</i>. John Wiley. Garg HP & Prakash J.1997. <i>Solar Energy Fundamental Application</i>. Tata McGraw Hill. Mittal KM. 1985. <i>Biomass Systems: Principle Applications</i>. New Age International Odum HT & Odum EC. 1976. <i>Energy Basis for Mat Nature</i>. Tata McGraw Hill. Rao SS & Parulekar BB.1999. <i>Non-conventional</i>, <i>Rene and Conventional</i>. Khanna Publ. Sukhatme SP.1997. <i>Solar Energy - Principles of Th Collection and Storage</i>. 2nd Ed. Tata McGraw Hill

Course code	FMPE 514
Course title	Research methodology
Course credit	0+1
Objective of Course	• To develop knowledge and skill for research.
	• To develop the ability of the students for solving solutions to problems through research methodology.
	• To strengthen the knowledge among students for Industry and
	R&D organizations.
Course Content	Practical
	The research problem -literature review -types of research,
	experimental & quasi-experimental research-causal comparative
	& correlation research Survey research- sampling techniques.
	Optimization software – GAMES –applications, electronic
	spread sheet – solver. Image analysis software –applications.
	General computational software for research - MATLAB -
	applications – statistical applications, Report writing –
	interpretation and reporting. Scientific writing techniques.
	Presentation -techniques
References:	• Hamdy A Taha. 2001. Operations Research. Prentice Hall of
	India.
	• Holman JP 1996. Experimental Methods for Engineers.
	McGraw Hill.
	• Rudra Pratap. 2003. Getting Started with MATLAB. A Quick
	Introduction for Scientists and Engineers. Oxford Univ. Press.

				Ta • St • St M Aj • W M	echnic tepher ngine teven tethoc villian teGra	ques. n J ers. l C C ls fo utions n J Pa w Hil	Khar Cha Easte Chapr <i>r Er</i> c. Tat alm.	nna P pman ern Pr a & <i>ngine</i> a Mc 2001.	ubl. . 20 ess. Ray: ers Graw Intr	003. 1 mond with 1 y. oductio	MATLA P Car Progrc on to N	AB Pr nale. 2 umming Matlab	cogra 2000. g and	mmir Nun d Sc	tistical ng for nerical ftware ineers.
Course O	utcor	nes									ill be a				
				CO1 : To acquaint and equip with solving a research problem,											
				CO2: Acquire knowledge on basics of optimization softwares.											
				CO3 : To get aware on image analysis softwares.											
				CO4: To get knowledge of general computational software for											
					rese	earch	•								
				CO	5:To 1	know	the t	echn	iques	of rep	oort an	d scien	tific	writi	ıg.
Mapping	betw	een (Cos,	POs a	and P	SOs									
CO							PO							PS)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	FMPE 601
Course title	Advances in farm machinery and power engineering
Course credit	3+1
Objective of Course	 To develop knowledge and skill for technical education and research in modern developments in construction, design and analysis of advanced farm machinery system. To develop the ability of the students to use computer analysis for farm machinery design. To strengthen the knowledge among students for Industry and R&D organizations.
Course Content	
Course Content	TheoryUNIT IFarm machinery system, its characteristics and evaluation.Identification of dynamic characteristics of related componentsof engine and agricultural machines. Mechanism of dynamicelements and analysis of forces, displacement and theirequilibrium in machines.UNIT IIStatement and formulation of design problems. Computer-aideddesign of mechanical power transmission systems. Half intervalsearch method. Single and double-tie-rod steering systems,development of mathematical models and its computer-aidedsolutions.UNIT IIIAnalysis of forces in tractor implement combinations under twoand three dimensional conditions. Vibrations, transmissibilityand effect of damping on various agricultural machine systemslike engine, cutter-bar, straw walker, threshing cylinder andreaper-binder.UNIT IVApplication of various vibration analysis methods. Tractordynamics; development of the model. Checking, interpretationand statistical analysis of results.Practical
	Development of computer programs for Half interval search method. Single and double-tie-rod steering systems, Development of mathematical models and its computer aided
	solutions. Design problems using CAD.
References:	 Bevan T. 1962. The Theory of Machines. Longman.Close CM, Fredrick DK & Newwell IC. 2001. Modelling and Analysis of Dynamic System. John Wiley & Sons.Franklin GF & Powell JD. 1980. Digital Control of Dynamic System. Addison Wesley Publ. Kepner RA, Bainer R & Berger EL. 1978. Principles of Farm Machinery. AVI Publ.Mabie HH & Ocrirk FW.1987. Mechanism and
	Dynamics of Machinery.John Wiley & Sons.Shigley JE & Uicker JJ. 1980.Theory

					of N	Machi	nery	and N	Mech	anism.	McGı	aw Hi	11		
Course O	utco	mes		CO 1	l: To a	aware	e abou	t the	adva	inces in	n farm	machi	nery	syste	ms.
				CO ₂	2: To	get ki	nowle	dge t	o for	mulate	e of dea	sign pr	obler	n.	
				CO3	: Und	lersta	nd the	e mat	hema	atical r	nodeli	ng.			
				CO4	: Acc	uire 1	know	ledge	on f	orce an	nalysis	in trac	ctor in	mple	ment
				com	binati	ons.		-			2			-	
				CO5	5: To	devel	op mo	odels	for c	lesign	and an	alysis	purpo	ose.	
Mapping	betw	ween Cos, POs and PSOs													
CO	PO			PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	FMPE 602
Course title	Simulation modelling in farm machinery and power
	engineering

Corse cr	edit		2	2+0											
Objectiv		ourse			To d	evelo	n kn	owl	edge	and	skill t	o do n	nathe	matic	al
U						elling	-		-						on and
							n the	e abi	litv	of the	e stude	ents fo	or dev	elopi	ng
						-	-		-			pertair		-	-
						er and	-						0		
			•	•	-				-	-	-		idents	s for I	ndustry
						R&D				-		U			5
Course	Conter	nt]	Theor	y										
			<u>I</u>	JNIT	Ī										
				System	m per	forma	nce	and	moc	lelling	g metł	nodolo	gies		
												- dime			
				-				-							system
					-						ion m	odel,	valida	tion a	and
				-	of th	e simu	ılati	on n	node	el					
				<u>JNIT</u>											
				-								d thei			
						•	-			•					ts, scale
									-			ity, ki			
				•			-				-	al met		in mo	del
				engineering. Principle of similarity in mathematical investigations. Mathematical modelling and its limitations, etc.											
				UNIT III											
				Mathematical modelling through ordinary differential equation											
				of first order, second order, partial differential equations.											
									-			eters d	-		
					•					-		illage		-	
					tion n		-					U			
			I	Practi	cal										
			I	Proble	ms in	simu	latio	n m	odel	s & B	uckin	igham	's Pi	theore	em.
												nd mat			
					0	•				0			-	ems	related
			t	o tilla	-							pmen			
Referen	ces:			٠		-					ional	Analy	vsis ar	nd	
				Similitude. McGraw Hill.											
				• Sedov LI. 1991. Similarity and Dimensional Methods in											
9	<u> </u>			Mechanics. Mir Publ., MoscowCO1: To acquaint and equip with concept of dimensional											
Course	Outcor	nes				quaint	t and	1 equ	up v	vith c	oncep	ot of di	mens	ional	
				analys		no 1	or 1	der	6m ⁻¹	haaia	of	odala	and		lowe
				CO2: Acquire knowledge on basics of models and model laws.											
				CO3 : Understand the development of mathematical modeling. CO4 :To get knowledge to apply similitude study.											
Mappin	o hetw	een Co					ricuž		սրլ	/1y 511	minu	ue stu	y.		
CO	PO		, 1	US all	u 1 50								PS	0	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-		-	•			Ľ		Ĺ	10					
CO1										1	1				
CO3											1				
									1	1	1				

	(C O 4															
--	---	--------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Course coo	le			FM	PE 60	3									
Course titl	e			Ene	rgy c	onse	rvatio	on an	d ma	nager	ment i	in farı	n pov	ver a	nd
				mac	hiner	·у									
Course cre	dit			2+0											
Objective	of Co	ourse	9	• To develop knowledge and skill regarding energy use pattern in agriculture production systems for technical education and research.											
				•	co	nserv	vation	meas	sures		ferent	nts to to opera			7
				• To strengthen the knowledge among students for Industry and R&D organizations.											dustry
Course Co	nten	t		Theory UNIT I											
				Energy requirement of different operations in agricultural production systems viz. crop, livestock and aquaculture. UNIT II											
				Energy conservation through proper management and maintenance of farm machinery, planning and management of											
				agricultural production systems for energy conservation and											
				energy returns assessment. <u>UNIT III</u>											
				Development of computer program for efficient energy											
				management in a given agricultural production system. Energy											
				use planning and forecasting for a given system.											
References	::			 Mittal JP, Panesar BS, Singh S, Singh CP & Mannan KD. 1987. Energy in Production Agriculture and Food Processing. ISAE and School of Energy Studies, Ludhiana. ISAE Publ. Pimental D. 1980. Handbook of Energy Utilization in Agriculture. CRC Press. 											
Course Ou	itcon	nes		CO	l: To	acqu	aint a	nd eq	uip v	vith es	stimati	on of	energ	у	
				 CO1: To acquaint and equip with estimation of energy requirement of different operations in agricultural production systems. CO2: Acquire knowledge on energy conservation measures. CO3: To assess energy economics for agricultural production systems. 											
				CO4: To design integrated energy supply system.CO5: To develop the energy use plan and forecast energy for a											
N			.	<u> </u>	n syst										
Mapping b		een (.0s,	rUs a	and P	SUS							DC		
CO	<u>PO</u>	-			-		-	0		10	14	10	PS 1		
001	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1									-						
CO2															
CO3									-						
CO4															
CO5															

Course code	FMPE 604
Course title	Computer aided analysis and design of farm machinery
Course credit	2+1
Objective of Course	 To develop knowledge and skill for technical education and research in design of farm power and machinery using CAD. To develop the ability of the students for design, analysis and manufacturing of farm machinery with the help of CAD To strengthen the knowledge among students for Industry
	and R&D organizations.
Course Content	TheoryUNIT IIntroduction to CAD – the design process – modelling usingCAD –architecture of CAD system. Geometric modelling –requirements – geometric construction methods – representationof curve – desirable modeling facilities. – CAD standards –Graphical Standard system – Exchange of modeling data.UNIT IISystem analysis – Relevance of system approach to biologicalsystems and engineering systems. Role of a system analyst indesign of a system and development of computer systems.Characteristics of Agricultural systems. Tools of structuredanalysisThe data flow model. Object oriented approach.Feasibility study – Steps in feasibility analysis – cost analysis.System design process – structured design.UNIT IIIApplication to farm machinery scheduling problem. Application
References:	 to farm – factory co-ordination – case study. Design of farm machinery with the help of CAD Practical Practical on CAD software, its uses and application in design of farm machinery. Design procedures. Exercise on agricultural engineering system analysis. Description of the machinery scheduling problem in harvesting and transport system. Investigation of existing software models – cases studies Chris McMahon & Jimmie Browne. 2000. CAD /CAM/
	 Chirls McMahon & Jinnie Browne. 2000. CAD/CAM/ Principles, Practice and Manufacturing Management. Pearson Edu. Grover Mikell P. 2003. Automation, Production Systems and Computer Integrated Manufacturing. Prentice-Hall of India. Ramakrishna P, Subramanyan S & Raju V. 2003. CAD/CAM/CIM. New Age International. Rao PN. 2002. CAD/CAM Principles and Applications. Tata McGraw Hill.

				• Zeid Ibrahim.1998. CAD/CAM Theory and Practice. Tata McGraw Hill.									е.			
Course O	outcor	nes		CO1 : To acquaint and equip with the basics of CAD.												
				CO2: Acquire knowledge on system analysis.												
				CO3 : To aware about tools of structured analysis.												
				CO4 : To solve the analytical problems related to the farm												
				machinery scheduling.												
				CO	5: To	desig	n fari	n ma	chin	ery wi	ith the	help of	f CA	D.		
Mapping	betw	een (Cos,	POs a	and P	SOs										
CO	PO												PS	0		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1																
CO2																
CO3																
CO4																
CO5																

Course code	FMPE 605
Course title	Machinery for natural resource management and precision
	farming
Course credit	3+1

Objective of Course	• To develop knowledge and skill in hardware system used in
	precision agriculture for technical education and research.
	• To develop the ability of the students for using systems for
	precision agriculture.
	• To strengthen the knowledge among students for Industry
	and R&D organizations.
Course Content	Theory
	<u>UNIT I</u>
	Functional design, specifications, requirements and working of farm
	machinery needed for natural resources management like rotavator,
	Precision sowing and planting machines, laser guided leveller,
	power sprayer, straw chopper cum spreader, straw bailer, combine
	harvester etc.
	<u>UNIT II</u>
	Ag GPS parallel swathing option, data base management, functional
	systems documentation. Application of relevant software.
	ÚNIT III
	An introduction to precision farming. GIS/GPS positioning system
	for precision farming, Yield monitoring and mapping, soil sampling
	and analysis. Computers and Geographic information systems.
	Precision farming- Issues and conditions. Role of electronics in farm
	machinery for precision farming.
	UNIT IV
	Engineering fundamentals related to earth moving machinery:
	Swell, shrinkage and compaction measurements. Use of tractors &
	Crawlers and effects of altitude & temperature on their performance.
	Grade resistance and gradability
	UNIT V
	Land cleaning and reclamation equipment. Land leveling equipment.
	Power shovels, drag lines, cam shells. Rubber tire for earth moving
	machinery. Trenching machineries and wagons. Economic analysis
	of land development machinery. Application of PERT and CPM to
	the problems related to land development
	Practical
	Introduction to GIS and GPS, study of models vis-à-vis farm
	machinery usage. Precision farming using GIS and GPS – case
	study. Study the mechanism of power shovels, drag lines, earth
	diggers, clamshells etc. earth work estimation, unit cost of operation,
	work scheduling, machinery maintenance, entrepreneurship
References:	De Mess M. N. Fundamental of Geographic Information
References:	System. John Willy and Sons, New York
	 Dutta SK. 1987. Soil conservation and land management.
	 Dutta SK. 1987. Son conservation and rand management. International distributors, Dehradun.
	• Kuhar, John. E. 1977. The precision farming guide for
	agriculturalist. Lori J. Dhabalt, USA.
	• Lille Sand, T and Kaiffer, R. Remote Sensing and Image
	Interpretation, John Willy and Sons, London.
	• Nichols HL& Day DH.1998. Moving the earth. The work
	book of excavation. Mcgraw Hill.

		•		meth and Sing engi Sigr & II	hods. Interj gh G. neeri na &	Mcg pretat 1991. ng. C Jagm /ood	raw H tion. 1 Man Oxfore nohan	Hill S Freen Jual o d and 1976	abbins nan, No f soil a IBH, 0 5. Eartl	, F. Re ew You ind wat Co. h movi	ning, eq mote S rk ter cons ng mac noving p	ensin servat	g Prin tion ty. Ox	nciple ford	
Course Out	com	es	0	CO1 : Get aware about farm machinery needed for natural resources											
				management.											
				CO2: To acquire ability for basics of GPS technology.											
				CO3 : To know the precision farming and it's techniques.											
						CO4: Acquire knowledge on land development machinery.									
		(CO5: To acquaint with engineering fundamentals related to earth												
			n	moving machinery.											
Mapping between Cos, POs and PSOs															
CO													PS	0	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	FMPE 606								
Course title	Advances in hydraulics and electro pneumatic controls								
Course credit	2+0								
Objective of Course	 To develop knowledge and skill for hydraulic and pneumatic systems for technical education and research. To develop the ability of the students for designing simple hydraulic and pneumatic circuits. To strengthen the knowledge among students for Industry and R&D organizations. 								

Course Co	onten	t		Theo	rv												
				UNIT	-												
					-			-	-	-	s of hyd				•		
								y. Co	ncept	s of en	ergy of	f hydra	ulic s	ystem	ns,		
				laws of fluid flow. UNIT II													
										tine of				1			
				Distribution system, pressure rating of tubing and hoses, couplings. Basics of hydraulic flow and hydraulic circuit analysis – pumps,													
						•			•			•	-	-			
				types and theory of operation. Pressure intensifiers. Fluid power actuators, hydraulic rams, gear motors, piston motors and their													
				performance characteristics, electro hydraulic motors and													
				hydrostatic transmissions, control components.													
				UNIT III Directional pressure safety and serve values. Hydraulic circuit													
				Directional pressure safety and servo valves. Hydraulic circuit													
				design. Regenerative pump unloading, pressure intensifier circuits. Speed control of hydraulic motors, mechanical hydraulic servo													
				systems for tractors.													
				<u>UNIT IV</u>													
											Compr				1		
				elements. Design of pneumatic circuits. Electrical control for fluid power circuits. Electronic sensors/ circuits used as controls in													
				-							of hyd				atic		
						-	-			ooting	•	inddife	unu p		ulle		
Reference	s:			Anthony Esposito. 2003. Fluid Power with													
				Applications.Pearsons Edu .													
				• Krutz G.1984.Design of Agricultural Machines. John Wiley													
				& Sons. Marritt HE 1991 Hydraulic Control System John Wiley a&													
				Merritt HE. 1991. Hydraulic Control System. John Wiley a& Sons.													
				 Sons. Majumdar SR. 2003. Oil Hydraulic System. Tata McGraw 													
				• Majumdar SK. 2005. On Hydraune System. Tata MeGraw Hill.													
Course Ou	itcon	nes		CO1: To acquaint with fundamentals of fluid power systems.													
				CO2: Acquire knowledge on working of fluid power actuators,													
				hydraulic motors, and hydraulic components.													
				CO3: Understand the hydraulic circuit design for the applications in farm power and machinery.													
										and w	orking	of nne	umati	c circ	mite		
											enance				ans.		
				pneur								u					
Mapping	betwe	een C	los, I	Os ai	nd PS	SOs											
CO	PO	-	-		L =			-	-	1		1	PS				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1 CO2																	
CO2 CO3																	
CO3																	
C04 C05																	
								1		I	1	1					

Course code	SWE 501
Course title	WATERSHED HYDROLOGY
Corse credit	2+1
Objective of Course	To acquaint and equip the students about hydrological process and analysis of hydrological data required for design process.
Course Content	Theory UNIT I Hydrologic processes and systems; Hydrologic problems of small watersheds; Hydrologic characteristics of watersheds. UNIT II Measurement and analysis of hydrologic parameters, rainfall- runoff models, stream flow measurement and analysis of data. UNIT III Hydrograph analysis; Unit hydrograph theory; Synthetic and dimension less hydrograph, convolution of unit hydrograph. UNIT IV Concept of hydraulic flood routing, flood routing (reservoir and channel routing). UNIT V Definition and concept of different types of hydrologic models for simulation of hydrologic problems
	Practical Rainfall analysis, runoff computation, construction of hydrographs, Delineation of watershed, hydrograph analysis, reservoir and channel routing, hydrologic models, visit to dam sites
References:	 Chow VT, David, M & Mays LW. 1988. Applied Hydrology. McGraw Hill. Ghanshyan Das 2000. Hydrology and Soil Conservation Engineering. Prentice Hall. Tideman EM. 1996. Watershed Management. Omega Scientific Publ
Course Outcomes	 At the end of the course, learners will be able to CO1: Comprehend hydrologic processes, watershed characteristics, and solve small watershed hydrologic issues by applying fundamental principles and analysis techniques. CO2: Proficiently measure, analyze, and interpret hydrologic parameters, utilizing rainfall-runoff models and stream flow data for comprehensive hydrologic assessments. CO3: Apply unit hydrograph theory, synthetic hydrographs, and dimensionless hydrograph techniques to conduct hydrograph analysis and understand convolution principles.

CO4: Evaluate the principles of hydraulic flood routing, employing flood routing methods including reservoir and channel routing for effective flood management.
CO5: Demonstrate a comprehensive understanding of diverse hydrologic models, effectively simulating hydrologic problems through practical applications such as rainfall analysis, runoff computation, hydrograph construction, watershed delineation, routing techniques, and site visits to dams for practical insights.

Mapping	Mapping between Cos, POs and PSOs														
CO	0 PO											PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	SWE 502
Course title	DESIGN OF FARM IRRIGATION SYSTEMS
Corse credit	2+1
Objective of Course	To acquaint and equip with the irrigation principles, design consideration of surface irrigation and micro irrigation systems and their evaluation system
Course Content	
	Theory UNIT I
	Concepts of Irrigation; Irrigation principles, losses, conveyance, distribution; Application, scheduling parameters, water budgeting. UNIT II
	Surface irrigation, hydraulics of water advance and recession, hydraulic resistance to flow, gravity irrigation. UNIT III
	Design of Border irrigation, furrow irrigation, check basin irrigation; Sub Irrigation methods and concepts UNIT IV
	Preliminary design criteria of sprinkler and micro irrigation systems, hydraulics of sprinkler and micro irrigation systems. Design of lateral, submain and main line of sprinkler and micro irrigation. Fertigation aspects. UNIT V
	Underground water conveyance system; Evaluation of irrigation systems and practices.
	Practical Design and evaluation of border, furrow, check basin, sprinkler and micro irrigation, computation of frictional losses, Design of underground water conveyance systems, economics of irrigation methods, visit to mechanized farms
References:	Finkel HJ. 1983.Handbook of Irrigation Technology. Vols. I-II. CRC Press.
	 Ivan E Henk. 1951. Irrigation Engineering. Vol. I. John Wiley & Sons.
	• Karmeli D, Peri G & Todes M. 1985.Irrigation Systems: Design and Operation. Oxford Univ. Press.
	Pillsbury AF. 1972. Sprinkler Irrigation. FAO Agricultural Development Paper No. 88, FAO.
	Rydzewski 1987. Irrigation Development Planning. John Wiley & Sons.
	• Sivanappan RK, Padmakumari O & Kumar V. 1987. Drip Irrigation. Keerthy Publ. House.
~ ~ ~	• Sivanappan RK. 1987. Sprinkler Irrigation. Oxford & IBH
Course Outcomes	At the end of the course, learners will be able

	CO1: Acquire a comprehensive understanding of irrigation concepts, principles, losses, conveyance, distribution, application, scheduling parameters, and water budgeting for effective water management in agriculture.
	CO2: Demonstrate proficiency in the hydraulics of surface irrigation, including water advance and recession, hydraulic resistance to flow, and the principles underlying gravity irrigation.
	CO3: Apply design principles to create effective border, furrow, and check basin irrigation systems while understanding the concepts and methods associated with sub-irrigation techniques.
	CO4: Demonstrate advanced knowledge in the preliminary design criteria of sprinkler and micro irrigation systems, including hydraulic aspects, design of lateral, submain, and main lines, and integration of fertigation techniques.
	CO5: Evaluate underground water conveyance systems, assess various irrigation systems and practices, and apply economic considerations to understand the efficiency and feasibility of different irrigation methods, incorporating real-world insights through visits to mechanized farms.
Mapping between COs w	

Mapping	Mapping between Cos, POs and PSOs														
CO	0 PO										PSO				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	SWE 503
Course title	AGRICULTURAL DRAINAGE SYSTEMS
Corse credit	2+1
Objective of Course	To acquaint and equip with the importance and phenomenon of drainage system along with design consideration of surface and sub-surface drainage systems
Course Content	
	Theory
	UNIT I Theories and applications of surface and sub-surface drainage, steady state, unsteady state drainage equations for layered and non-layered soils,
	horizontal sub-surface drainage. UNIT II
	Principle and applications of Earnst, Glover Dumm, Kraijenhoff- van-de-leur equations. UNIT III
	Salt balance, leaching requirement and management practices under drained conditions. UNIT IV
	Design of different components of sub-surface drainage systems, theories of vertical drainage and multiple well point system. UNIT V Disposal of drainage effluents, Management of drainage projects
	of water- logged and saline soils, case studies Practical
	Measurement of in-situ hydraulic conductivity, estimation of drainage coefficient and leaching requirements, Delineation of waterlogged areas through isobar, isobath and topographic maps. Design of surface and sub- surface drainage systems, design of filter and envelop materials
References:	Battacharaya AK & Micheal AM. 2003. Land Drainage. Vikas Publ.
	 Clande Ayres & Daniel Scoates A.E. 1989.Level Drainage and Reclamation. McGraw Hill. Luthin JN. 1978. Drainage Engineering. Wiley Eastern. Ditroma UD (Ed.) 1004. Drainage Principles and
	 Ritzema HP. (Ed.). 1994. Drainage Principles and Applications. ILRI Roe CE 1966. Engineering for Agricultural Drainage. McGraw Hill
Course Outcomes	At the end of the course, learners will be able CO1: Understand and apply theories of surface and sub-surface drainage, including steady-state and unsteady-state equations, for varied soil compositions and drainage scenarios.

	CO2: Apply advanced equations such as Earnst, Glover Dumm, and Kraijenhoff-van-de-leur equations in drainage applications
	and comprehend their practical significance.
	CO3: Analyze and manage salt balance, leaching requirements, and implement effective strategies for soil management under
	drained conditions.
	CO4: Design diverse components of sub-surface drainage
	systems, evaluate theories related to vertical drainage, and demonstrate proficiency in multiple well point system
	applications.
	CO5: Develop comprehensive skills in the disposal of drainage
	effluents, manage projects in waterlogged and saline soils, and
	critically assess and solve real-world drainage-related case
	studies for efficient land and water management.
Mapping between COs w	vith POs and PSOs

Mappin	Mapping between Cos, POs and PSOs														
CO	PO											PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	SWE 504
Course title	GROUNDWATER ENGINEERING
Corse credit	2+1
Objective of Course	To acquaint and equip with the occurrence, development and
	hydraulics of groundwater flow.
Course Content	Theory
	Theory UNIT I
	Properties affecting groundwater storage and movement, groundwater balance studies. UNIT II
	Well hydraulics, two dimensional flow, steady and unsteady state flow in confined, unconfined and semi-confined aquifers, steady flow in sloping aquifers, partial penetrating wells. Analysis of multi-aquifers. UNIT III
	Flow analysis in interfering wells. Pumping tests and determination of aquifer parameters. UNIT IV
	Groundwater modeling for water resources planning. UNIT V
	Techniques for groundwater recharge Practical
	Water table contour maps and determination of groundwater flow, estimation of aquifer characteristics, problems on non leaky and leaky aquifers, analysis of pumping test data; Computation of interference of wells; groundwater computer simulation models
References:	Boonstra J & de Ridder NA. 1981.Numerical Modeling of Groundwater Basins. ILRI.
	 Domenico PA. 1972.Concept and Models in Groundwater Hydrology. McGraw Hill.
	 Hantush MS. (Ed.). 1964. Advances in Hydro Sciences. Vol. I. Academic Press.
	• Harr ME 1990. Ground Water and Seepage. Wiley Eastern.
	 Huisman L. 1972. Groundwater Recovery. MacMillan. Polubarinova Kochina P Ya 1962. Theory of Ground Water Movement. Princeton Univ. Press.
	 Raghunath HM. 1992. Ground Water. Wiley Eastern. Todd DK. 1997. Ground Water Hydrology. Wiley Eastern
Course Outcomes	At the end of the course, learners will be able CO1: Comprehend the properties governing groundwater storage

	and movement, and conduct groundwater balance studies for effective analysis and management of groundwater resources.
	CO2: Analyze well hydraulics, including two-dimensional flow, steady and unsteady state flow in different aquifer types (confined, unconfined, semi-confined), and apply this knowledge to assess partial penetrating wells and multi-aquifer systems.
	CO3: Perform comprehensive analysis of interfering wells' flow and conduct pumping tests to determine aquifer parameters, developing proficiency in characterizing aquifers through practical applications.
	CO4: Utilize groundwater modeling techniques for water resources planning, demonstrating the ability to apply theoretical knowledge to simulate and assess groundwater systems for effective resource management.
	CO5: Apply various techniques for groundwater recharge and demonstrate practical skills in creating water table contour maps, estimating aquifer characteristics, analyzing pumping test data, computing well interference, and utilizing groundwater computer
	simulation models for real-world applications.
Mapping between COs w	ith POs and PSOs

CO	PO	PO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	SWE 505									
Course title	SOIL AND WATER CONSERVATION ENGINEERING									
Corse credit	2+1									
Objective of Course	To acquaint and equip students with the process of degradation soil and water conservation and their remedial measures including design of structures									
Course Content	Theory UNIT I Probability and continuous frequency distribution; Fitting empirical distributions. UNIT II Layout and planning of soil and water conservation measures; Design principles of soil and water structures including contour bunds and terraces; Gully control measures. UNIT III Hydraulic jump and energy dissipaters for soil conservation structures; Hydrologic, hydraulic and structural design of drop structures. UNIT IV Sediment deposition process. Estimation of sediment load, earthen dams, seepage through dams and stability analysis. UNIT V Rainwater harvesting, Flood control and stream bank protection measures.									
	Practical Design of Drop spillway, chute spillway, drop inlet spillway, hydraulic jump Calculation, design of bench terrace, contour bunds and contour trenches, Design and problems on earthen dam, silt detention tanks and check dams, visit to soil conservation structures sites.									
References:	 Garde RJ & Ranga Raju KG. 1977. Mechanics of Sediment Transport and Alluvial Stream Problems. Willey Eastern. Gurmel Singh et al. 1994. Manual of Soil and Water Conservation Practices. Oxford & IBH. Hudson N.1971. Soil Conservation. B.T. Batsford Ltd. Murthy VVN. 1998. Land and Water Management Engineering. Kalyani. USDA 1969. A Manual on Conservation of Soil and Water. Oxford & IBH 									
Course Outcomes	At the end of the course, learners will be able CO1: Understand and apply probability concepts and continuous frequency distributions to analyze soil and water conservation data, incorporating empirical distribution fitting for practical applications.									

	CO2: Demonstrate proficiency in planning, designing, and implementing various soil and water conservation measures, including contour bunds, terraces, and gully control techniques.
	CO3: Apply knowledge of hydraulic principles to design effective soil conservation structures, including drop structures, energy dissipaters, and hydraulic jump calculations for water conservation purposes.
	CO4: Evaluate sediment deposition processes, estimate sediment load, and assess the design and stability of earthen dams, focusing on seepage control and sedimentation management for sustainable water resource conservation.
	CO5: Integrate rainwater harvesting methods, flood control strategies, and stream bank protection measures into comprehensive soil and water conservation practices, emphasizing effective water management and conservation techniques.
Mapping between COs v	vith POs and PSOs
Please refer mapping o Mapping between Cos.	f PO and PSO for the style of mapping. POs and PSOs

Mapping	g betv	veen (Cos, l	POs a	nd PS	SOs									
CO	PO	PO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	SWE 506
Course title	CROP ENVIRONMENTAL ENGINEERING
Corse credit	2+0
Objective of Course	To acquaint and equip with the process of soil-water-plant relationship and their interaction for crop growth
Course Content	Theory UNIT I Aerial and edaphic environments for plant growth, energy and mass transfer in and above crop canopies. UNIT II Climatic changes and plant response to environmental stresses, evapo- transpiration models. Instrumentation and techniques for monitoring plant environments.
	UNIT III Processes and aspects of growth and development, soil-root interface, root sink functions. UNIT IV Water movement in soil-plant atmosphere continuum,
	artificial environments and plant behaviour.UNIT VDesign and operation of controlled environment facilities and their instrumentation. Crop growth and yield modeling.
References:	 Ghildyal BP & Tripathy RP. 1987. Fundamental of Soil Physics. Wiley Eastern. Slatyor OP. 1967. Plant Water Relationship. Academic Press.
Course Outcomes	At the end of the course, learners will be able CO1: Comprehend the aerial and edaphic environments influencing plant growth, demonstrating an understanding of energy and mass transfer within crop canopies for effective crop management practices.
	CO2: Analyze the impact of climatic changes on plants and their response to environmental stresses, utilizing evapotranspiration models and instrumentation techniques for monitoring and understanding plant environments.
	CO3: Understand the processes and dynamics of growth and development in plants, focusing on the soil-root interface and root sink functions essential for plant health and productivity.
	CO4: Evaluate the continuum of water movement within the soil-plant atmosphere system, exploring artificial environments and their influence on plant behavior, thus enhancing strategies for efficient water management in agriculture.

CO5: Demonstrate proficiency in designing and operating
controlled environment facilities, utilizing instrumentation for
plant research, and applying crop growth and yield modeling
techniques for optimal agricultural production and management.

Please refer mapping of PO and PSO for the style of mapping. Mapping between Cos, POs and PSOs

CO	PO)								PO														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3									
CO1																								
CO2																								
CO3																								
CO4																								
CO5																								

Course code	SWE 507									
Course title	DESIGN OF PUMPS FOR IRRIGATION AND DRAINAGE									
Corse credit	2+0									
Objective of Course	To acquaint and equip with requirement of pumps for irrigation and drainage system and their design features									
Course Content	Theory UNIT IBasic hydraulic design of centrifugal pump, water hammering problem in centrifugal pump.UNIT IIPrinciple and performance characteristics of vertical turbine pump, submersible pump and axial flow pump and their design.UNIT IIINon-conventional energy sources for pumping, wind mills, 									
	design criteria. UNIT IV Design of pumping station, techno-economic evaluation. Energy conservation measures for pumping systems									
References:	 Church AH & Jagdish Lal 1973 Centrifugal Pumps and Blowers. Metropolitan Book Co. Michael AM & Khepar SD. 1989. Water Well and Pump Engineering. Tata McGraw Hill. Michael AM. 1990. Irrigation Theory and Practice. Vikas Publ. House. Modi PN & Seth SM. 2000 Hydraulic and Fluid Mechanics. Standard Book House. 									
Course Outcomes	At the end of the course, learners will be able									

	CO1: Understand the fundamental principles of hydraulic design related to centrifugal pumps, including the analysis of water hammering problems and their mitigation strategies.
	CO2: Analyze the principles, performance characteristics, and design aspects of various pump types such as vertical turbine pumps, submersible pumps, and axial flow pumps.
	CO3: Evaluate non-conventional energy sources for pumping systems, such as windmills, micro turbines, solar pumps, and hydraulic ram pumps, demonstrating the ability to select and design them based on specific criteria.
	CO4: Demonstrate proficiency in designing pumping stations, conducting techno-economic evaluations, and implementing energy conservation measures for pumping systems to optimize efficiency.
	CO5: Apply theoretical knowledge and practical skills to design and optimize different pump systems, integrating traditional and non-conventional energy sources while considering techno- economic factors and energy conservation practices.
Mapping between COs w	vith POs and PSOs

Please refer mapping of PO and PSO for the style of mapping. Mapping between Cos. POs and PSOs

Mapping CO	betw PO	een (20 s , 1	2Os a	and P	'SOs							PSO				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1																	
CO2																	
CO3																	
CO4																	
CO5																	

Course code	SWE 508
Course title	OPEN CHANNEL FLOW
Corse credit	3+0
Objective of Course	To acquaint and equip with the hydraulics of surface water flow phenomenon in open channels
Course Content	Theory UNIT I Open channel and their properties, energy and momentum, critical flow computation and application. UNIT II Uniform flow; gradually varied flow theory and analysis,

CO1	-	_		-	-										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
Mapping I CO	betw PO	een (. os, P	'Os ai	nd PS	OS							PS	0	
Please refe		_	-				or the	e style	e of r	nappi	ng.				
Mapping b	etwe	en C	Os wi	th PO	s and	PSC)s								
				condi		-	-			charl0	5 1110	ving v	ariot	15 110	vv
				relate	d to c	pen	chanr	nel flo	ow, ii	ntegra	ting the sinvol	eoretic	al		
										-	ving c		x pro	blem	IS
				rapidl	y var	ied u	instea	dy flo	ów, s	howca	asing a en chai	n unde	•		
							-	-		-	ctical aried u				d
				CO3: Apply theoretical knowledge to design transitions and handle flow through channels of non-linear alignment and non- prismatic channel sections, utilizing hydraulic jump principles as energy dissipators.											
				CO3:	Appl	y the	eoreti	cal kn	owle	edge to	o desig	n trans	sition	is and	b
				and a	pply o d to t	comp ransi	outatio tions,	onal n flow	netho	ods fo	dually r solvii lands,	ng prac	ctical	prob	olems
				applic				đ		1	1 11		CI	a	
				princi comp	ples o utatic	of en on, de	ergy	and m	nome	entum,	critica ncy in	l flow	, and	their	-
Course Ou	tcom	es									l be ab pen ch		incl	uding	g the
							rson	FM. 1	966	. Oper	h Chan	nel Flo	w. N	IacM	fillan
1010101000	•				• Cho		-			-	Channe nel Hye				
References	•			varied	l unst	eady	flow				-		-	-	
				UNIT V Unsteady flow, gradually varied unsteady flow and rapidly											
				channel of non-linear alignment and flow through non-prismatic channel sections.											
				UNIT IV Hydraulic jump and its use as energy dissipator, flow through											
				Island	ls etc.					-	idly va		-		
				UNIT Practi		roble	ems si	ich as	desi	ign of	transit	ions. f	low 1	bassii	ng
				Practi	cal p					-	transit		-	passii	ng

CO2								
CO3								
CO4								
CO5								

Course code	SWE 509									
Course title	FLOW THROUGH POROUS MEDIA									
Corse credit	2+0									
Objective of Course	To acquaint and equip with the hydraulics and process of water flow in the water bearing formation under saturated as well as unsaturated conditions.									
Course Content	Theory UNIT I Aquifer and fluid properties, forces holding water in soils, hydrodynamics in porous media and limitations of governing laws. UNIT II Differential equations of saturated flow, initial and boundary conditions. Dupuit and Business approximations and linearization techniques. UNIT III Stream functions, potential functions and flow net theory. Analysis of seepage from canals and ditches. UNIT IV Unsaturated flow theory, Infiltration and capillary rise flux dynamics. Hydro-dynamic dispersion in soil-aquifer system.									
References:	 Harr Milton E. 1962. Groundwater and Seepage. McGraw-Hill. Jacob Beer 1972. Dynamics of Fluid Flow in Porous Media. Elsevier. Muskat M & Wyckoff RD. 1946. The Flow of Homogeneous Fluids through Porous Media. JW Edwards. Patrick A Domenico & Schwartz FW. 1998.Physical and Chemical Hydrogeology. John Wiley & Sons. Remson I, Hornberger GM & Moiz Fred J. 1971. Numerical Methods in Subsurface Hydrology. Wiley Interscience 									
Course Outcomes	At the end of the course, learners will be able CO1: Understand aquifer properties, fluid behavior in soils, and the forces governing water retention, demonstrating knowledge of hydrodynamics in porous media and recognizing the limitations of governing laws in the context of groundwater. CO2: Apply differential equations governing saturated flow, define initial and boundary conditions, and utilize Dupuit and Boussinesq approximations along with linearization techniques for practical applications in groundwater flow modeling. CO3: Analyze concepts related to stream functions, potential									

	functions, and flow net theory, demonstrating the ability to apply these theories for the analysis of seepage from canals and ditches in practical scenarios.
	CO4: Comprehend unsaturated flow theory, infiltration dynamics, and capillary rise flux, demonstrating understanding and application of these concepts in analyzing groundwater movement in partially saturated conditions.
	CO5: Evaluate hydrodynamic dispersion in soil-aquifer systems, showcasing a comprehensive understanding of how dispersion affects groundwater movement and quality in practical contexts.
Mapping between COs v	vith POs and PSOs
Please refer mapping o	f PO and PSO for the style of mapping.
Mapping between Cos,	

CO	PO												PS)	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	SWE 510
Course title	WATER RESOURCES SYSTEM ENGINEERING
Corse credit	3+0
Objective of Course	To acquaint and equip with the techniques for optimization of water resources for achieving maximum output
Course Content	Theory UNIT I Concepts and significance of optimization in water resources, objective functions, deterministic and stochastic inputs. UNIT II Mathematical programming techniques, linear programming and

CO2 CO3																
CO2																
CO1	1	4	5	-+	3	U		0	,	10	11	14	1	4	3	
CO	PO 1	2	3	4	5	6	7	8	9	10	11	12	PS	$\frac{0}{2}$	3	
Iapping		een (Cos, I	POs a	and I	PSOs							D.C.			
lease ref			-					ne sty	le of	mapp	ing.					
	2011 01		20 11		2.5 u li		20									
/Iapping b	etwee	en C	Os w					00108	gies.							
								throug dolog		thema	tical p	rogram	iming	g and		
				tech	nique	es, de	mons	stratir	ig the	abilit	y to ad	dress c	ompl	ex iss	sues	
										-		ous opt				
				COS	· Fv	aluate	and	nron	ose o	ntimiz	ed solu	tions f	or wa	iter		
				efficiency and sustainability.												
				conjunctive use, crop production functions, and irrigation optimization, showcasing the ability to enhance water utilization												
					-			-				sources and ir			5	
						•		-		-		n techni	-			
				PIOL		су III	unen	pract	ical l	mpicii	icitati					
										-	ons, de nentatio	monstr	ating			
				geor	netric	c prog	gram	ming	and c	lynam	ic prog	grammi	ng sp	ecific	cally	
				CO3: Apply advanced optimization methodologies like												
								effect		-		runnz	anon	PIUU	101110	
					-	•			-		. 0	lient mo ptimiz				
									-	-	-	echniqu				
				SIUCI	liasu	, mpt	115 111	wate	i iiial	ageill	ent pro	orems.				
				•								veen de blems.		inisti	c and	
				in w	ater 1	resour	rces 1	mana	geme	nt, inc	luding	the for	mula	tion o	of	
		00										icance	of op	timiz	atior	
Course Ou	tcom	es		East At th		d of t	he co	ourse	learr	ers wi	ll be a	ble				
						978.	Opti	miza	tion T	Theory	and A	pplicat	ions.	Wile	У	
				Ana	lysis.	Pren	tice l	Hall.			•			C		
Xererences	> .				•							stem Pl				
References									-		optimiz	zation ook. M	[o G ro	<u></u> Ц	11	
					-			-			-	conjunc	tive u	use, c	rop	
					T IV	Zatio		iiiiqu	CS 101	water	10500	1005.				
											ic prog resou	gramm	ing, a	pplic	atio	
					T III	-			-							
										zation						

CO5											
Course code	SWE 511										
Course title	GIS AND REMOTE SENSING FOR LAND AND WATER RESOURCE MANAGEMENT										
Corse credit	2+1										
Objective of Course	To acquaint and equip with the techniques of Remote Sensing and application of GIS for land and water resources management										
Course Content	Theory UNIT I Basic principles of remote sensing and sensors. Elements of photogrametry. UNIT II Electromagnetic spectrum. Energy interaction with surface features, Aerial photo and satellite imagery. Photo and image interpretation. UNIT III Principles of Geographical Information System tools, their types and capabilities, Advantages of GIS over conventional methods. UNIT IV Importance of ground truth establishment, GIS and remote sensing for land and water resources data collection, analysis and interpretation, Application of GIS in water and land resource development and management Practical										
	Factical Familiarization with remote sensing and GIS hardware, software and their principle of working, Methods of establishing ground truth, Comparison between ground truth and remotely sensed data, Application of GIS packages.										
References:	 De Mess MN. 2004. Fundamental of Geographic Information System. John Wiley & Sons. Lille Sand T & Kaiffer R.1987. Remote Sensing and Image Interpretation. John Wiley & Sons. Sabbins F.1987. Remote Sensing Principle and 										
Course Outcomes	Interpretation. FreemanAt the end of the course, learners will be ableCO1: Demonstrate an understanding of the fundamentalprinciples of remote sensing, including sensor technology andphotogrammetry elements, essential for data collection andanalysis.										
	CO2: Analyze the electromagnetic spectrum and comprehend the interaction of energy with surface features, utilizing aerial photos and satellite imagery for interpretation and analysis purposes.CO3: Apply the principles of Geographical Information System										

	(GIS) tools, understanding their types, capabilities, and advantages over conventional methods for spatial data management and analysis.
	CO4: Evaluate the significance of ground truth establishment and utilize GIS and remote sensing for the collection, analysis, and interpretation of land and water resources data, demonstrating proficiency in applying GIS techniques in water and land resource development and management.
	CO5: Demonstrate proficiency in operating remote sensing and GIS hardware and software, understand their functioning principles, establish ground truth, compare ground truth data with remotely sensed data, and apply GIS packages for practical applications in data analysis and interpretation.
Manning between COs w	with POs and PSOs

Mapping	betw	veen	Cos, l	POs a	nd P	SOs										
CO	PO	PO														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1																
CO2																
CO3																
CO4																
CO5																

Course code	SWE 512
Course title	WATERSHED MANAGEMENT AND MODELING
Corse credit	2+1
Objective of Course	To acquaint and equip the students with the watershed management modeling and modeling systems
Course Content	
	Theory
	UNIT I
	Problems of desertification and degradation. Models of sediment
	yield
	UNIT II
	Survey, monitoring, reclamation and conservation of agricultural and forest lands, hill slopes and ravines
	UNIT III
	Concept of operational watershed. National land use policy, legal
	and social aspects
	UNIT IV
	Watershed management research instrumentation and
	measurement, problem identification, simulation and synthesis

	UNIT V
	Modelling of flood and drought phenomenon, drought
	management and dry farming
	Practical
	Preparation of watershed development proposal, preparation of
	water shed evaluation report. Application of Models of flood and drought phenomenon. Application of watershed models.
References:	• Isobel W Heathcote. 1998. Integrated Watershed
	Management: Principles and Practice. Wiley Publ.
	• Kenneth N Brooks, Peter F Ffolliott, Hans M Gregersen,
	Leonard F DeBano. 1991. Hydrology and the
	Management of Watersheds.Wiley-Blackwell.
Course Outcomes	At the end of the course, learners will be able
	CO1: Understand and analyze issues related to desertification,
	degradation, and sediment yield modeling, essential for
	addressing soil erosion problems and land degradation.
	CO2: Demonstrate proficiency in surveying, monitoring, and implementing strategies for land reclamation, conservation of agricultural and forest lands, and hill slope management to mitigate degradation.
	CO3: Comprehend the concept of operational watershed, incorporating legal, social, and national land use policy aspects into watershed management practices.
	CO4: Apply research methods, instrumentation, and simulation techniques to identify and address problems in watershed management effectively.
	CO5: Analyze, model, and implement strategies for managing flood and drought phenomena, including drought management and dry farming techniques, contributing to effective water resource management and conservation.
Mapping between COs w	vith POs and PSOs

Please refer mapping of PO and PSO for the style of mapping. Mapping between Cos, POs and PSOs

CO	PO	PO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	SWE 513
Course title	LAND DEVELOPMENT AND EARTH MOVING
	MACHINERY
Corse credit	2+0
Objective of Course	To acquaint and equip the students with the Land Development and Earth Moving Machinery modeling and modeling systems
Course Content	Theory UNIT IObjectives, methods and equipment for land clearing and development. Machinery selection, mechanics of operation and vegetation types.
References:	 Doring Internites: Different includes of boring. Dutta SK. 1987. Soil Conservation and Land Management. International Distributors, Dehradun. Eric C Orlem.1997. Earth-Moving Machines. Motorbooks International. Kuhar JE. 1977. The Precision Farming Guide for Agriculturalist. Lori J. Dhabalt, USA. Nichols HL & Day DH.1998. Moving the Earth. The Work Book of Excavation. McGraw Hill. Peurifoy RL. 1956.Construction, Planning, Equipment and Methods.McGraw Hill. Roger V Amato & Donald J Heimburger 2003. Classic Vintage Crawlers and Dozers. B Heimburger House Publ. Singh G.1991. Manual of Soil and Water Conservation Engineering. Oxford & IBH
Course Outcomes	At the end of the course, learners will be able CO1: Demonstrate an understanding of the objectives, methods, and equipment utilized for land clearing and development, including machinery selection and mechanics of operation tailored for various vegetation types. CO2: Analyze earthmoving machinery, mechanics, and principles involved in grading sloped lands, as well as

					understanding the mechanisms employed in crawler-mounted tractors for effective land development.										ed
				CO3: Evaluate earth diggers, ditchers, bulldozers, scrapers, elevating and self-powered graders, and comprehend the automation techniques used in earth moving and grading machines, including technologies like laser-guided leveling with the global positioning system.											
				CO4: Understand the functioning and various methods employed											
				by b	oring	mac	hines	s, der	nonst	rating	profici	iency ii	n diff	erent	
				techi	nique	s util	ized	in bo	ring	proces	ses for	land d	evelo	pmer	nt
				purp	oses.										
Mapping b	etwe	en C	Os wi	ith PO	Os an	d PS	Os								
Please ref								ie stv	le of	mapp	oing.				
Mapping			0					·			0				
CO	PO					10							PS	0	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	SWE 601
Course title	ADVANCED HYDROLOGY
Corse credit	3+0
Objective of Course	To acquaint and equip the students with advanced hydrological process, analysis of hydrological data and their application for modeling
Course Content	Theory UNIT IHydrologic models, processes and systems. Uncertainty in hydrological event. Statistical homogeneity. UNIT IIProbabilistic concept. Frequency analysis. Co-relation and regression analysis. Probability distribution of hydrological variables. UNIT III Time series analysis. Markov processes.
References:	 Garg SK.1987. Hydrology and Water Resources Engineering. Khanna Publ. Hann CT. Advanced Hydrology. Oxford Publ. House. Linseley RK Jr., Kohler MA & Paulhus JLH. 1975. Applied Hydrology. McGraw Hill. Mutreja KN.1986. Applied Hydrology. Tata McGraw Hill
Course Outcomes	 CO1: Understand and evaluate hydrological models, systems, and processes, recognizing and addressing uncertainties associated with hydrological events while emphasizing the concept of statistical homogeneity in hydrological data. CO2: Apply probabilistic concepts in hydrology, including conducting frequency analysis, correlation, and regression analysis, and proficiently determine probability distributions of hydrological variables for comprehensive analysis. CO3: Analyze time series in hydrology, demonstrating proficiency in Markov processes and time-based data analysis methods essential for understanding sequential patterns in hydrological data. CO4: Develop and apply statistical models in hydrology, demonstrating the ability to formulate, interpret, and implement these models for assessing and predicting hydrological phenomena effectively. CO5: Utilize statistical techniques and models for analyzing hydrological data, enabling comprehensive assessments and predictions regarding various aspects of water resource management and hydrological events.
	PO and PSO for the style of mapping.
Mapping between Cos, I	
CO	PO PSO

	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	SWCE 602
Course title	Soil and Water Systems Simulation and Modeling
Corse credit	2+1
Objective of Course	To acquaint and equip the students with the simulation of soil water systems and modeling techniques
Course Content	
	Theory UNIT I Systems engineering for water management; Complexity of resources management process, systems analysis. UNIT II Rainfall-runoff models - Infiltration models, Simulation methods, structure of a water balance model. UNIT III Channel flow simulation - parameters and calibration - Streamflow statistics, surface water storage requirements. UNIT IV Flood control storage capacity; total reservoir capacity - surface water allocations. Ground water models. UNIT V Design of nodal network, General systems frame work – Description of the model; Irregular boundaries, General –Numerical approaches Practical Rainfall - Runoff models - Infiltration models - Stanford watershed model (SWM) - channel flow simulation problems - stream flow statistics – model parameters and input data requirements of various softwares of surface hydrology and groundwater – Hydrologic Modelling System – Soil Water Management Model – Soil Water Assessment Tool – Catchments, Simulation Hydrology Model – Stream flow model and use of dimensionless unit hydrograph –
	Generalized groundwater models.
References:	 Biswas AK. 1976. Systems Approach to Water Management. McGrawHill. Cox DR & Mille HD. 1965.The Theory of Stochastic Processes. John Wiley & Sons.

					 Eagleson PS. 1970. Dynamic Hydrology. McGraw Hill. Himmel Blau DM & Bischoff KB. 1968. Process Analysis and Simulation Deterministic Systems. John Wiley & Sons. Linsley RK, Kohler MA & Paulhus JLH. 1949. Applied Hydrology.McGraw Hill. Schwar RS & Friedland B. 1965. Linear Systems. McGraw Hill. Ven Te Chow, David R Maidment & Mays LW. 1998. Applied Hydrology. McGraw Hill. 																		
Course Outc	comes	5		CO1: Analyze and apply systems engineering principles in wate management, comprehending the complexities involved in resource management processes through effective systems analysis.																			
				CO2: Demonstrate proficiency in utilizing rainfall-runoff models, infiltration models, and simulation methods, understanding the structure and implementation of water balance models for hydrological assessments.																			
				statis comp	tics,	and e in	surfa	nce v	vater	stora	ge req	parame juireme effective	nts,	show	casing								
				water know	r alle	ocatio for	ns, a	and	grour	nd wa	iter m	eservoir odels, ource	integ	grating	this								
				syste hydro	ms fi ologic	ramev al mo	vorks, delin	, and g, faci	app	ly var	ious n	networl umerica ssessme	al ap	proach	nes in								
Mapping bet	tweer	n COs	s with	of water resource systems. h POs and PSOs																			
				PO and PSO for the style of mapping. Os and PSOs																			
	LIWE	<u>n C0</u>	5,10	1 3 anu	130	C S	PO							PSO	,								
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3								
CO1																							
CO2																							
CO3																							
CO4																							
CO5																							

Course code	SWE 603
Course title	MODELING SOIL EROSION PROCESSES

Corse credit	2+1
Objective of Course	To acquaint and equip the students with the advance erosion process along with tools required and application of soil erosion models.
Course Content	Theory UNIT I Overland flow, basic theory of particle movement and sediment transport; sediment deposition process. UNIT II Estimation of sediment load; mechanics of soil erosion by water and wind. UNIT III Water and wind erosion control measures. UNIT IV Universal soil loss equation; stochastic models and dynamic models
	Practical Computation of soil erosion index; Estimation of soil erodibility factor; Design of erosion control structures. Computation of suspended load and sediment load using empirical formulae; Application of sediment yield models, prediction of sediment loss – computation of reservoir sedimentation – sounding method
References:	 Garde RJ & Ranga Raju KG. 1977. Mechanics of Sediment Transport and Alluvial Stream Problems. Wiley Eastern Ltd. Morgan RPC. (Ed. D. A. Davidson). 1986. Soil Erosion and Conservation. ELBS,Longman. USDA. 1969. A Manual on Conservation of Soil and Water. Oxford & IBH
Course Outcomes	CO1: Understand the principles of overland flow, sediment transport, and deposition, comprehending erosion processes and their implications.
	CO2: Apply methods for estimating sediment load and grasp the mechanics of soil erosion by water and wind, demonstrating proficiency in erosion assessment techniques.
	CO3: Implement erosion control measures effectively for both water and wind erosion, showcasing the ability to apply preventative strategies.
	CO4: Apply the Universal Soil Loss Equation (USLE) and other relevant models to predict and control soil erosion, demonstrating competence in erosion modeling.
	CO5: Demonstrate practical skills in computing soil erosion indices, estimating erodibility factors, designing erosion control structures, and applying sediment prediction models for various real-world applications such as reservoir sedimentation.
Mapping between COs w	vith POs and PSOs
	f PO and PSO for the style of mapping.
Mapping between Cos,	POs and PSOs

CO		РО												PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1																
CO2																
CO3																
CO4 CO5																
CO5																

Course code	SWE 604
Course title	ADVANCED HYDO-MECHANICS IN SOIL AQUIFER SYSTEMS
Corse credit	3+0
Objective of Course	To acquaint and equip the students with the advance soil-aquifer-water mechanics and various techniques for the analysis of the system
Course Content	Theory UNIT I Soil aquifer system. Flow of water in partially saturated soils. Partial
	differential equation of flow. UNIT II Determination of unsaturated hydraulic conductivity and models for its estimation. UNIT III
	Infiltration and exfiltration from soils in absence and presence of water table. Movement of groundwater in fractured and swelling porous media. UNIT IV Spatial variability. Theory of krigging. Statistical approaches in soil
References:	 water dynamics Kirkham & Powers.1972. Advanced Soil Physics. John Wiley & Sons. Muskut M.1937. The Flow of Homogeneous Fluid through Porous Media. McGraw Hill
Course Outcomes	CO1: Understand the dynamics of soil aquifer systems, including the flow of water in partially saturated soils and the application of partial differential equations to model water flow in these systems.
	CO2: Demonstrate proficiency in determining unsaturated hydraulic conductivity and utilizing various models for its estimation, essential for analyzing water movement in partially saturated soils.
	CO3: Analyze infiltration and exfiltration processes in soils, especially in the presence and absence of a water table, and comprehend the movement of groundwater in fractured and swelling porous media.
	CO4: Evaluate spatial variability in soil water dynamics, including the theory of kriging and the application of statistical approaches, essential for understanding and managing variability in soil water content.
	CO5: Apply theoretical knowledge to practical scenarios,

				demonstrating proficiency in understanding soil water dynamics conducting estimations, and employing statistical methods for effective soil water management and analysis.											
Mapping be	etwee	een COs with POs and PSOs													
Please refe	r maj	pping	of P	O and	l PSO) for t	he sty	yle of	map	ping.					
Mapping b	oetwe	en Co	s, PC)s and	l PSO	s									
CO							PO							PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	SWE 605
Course title	HYDRO-CHEMICAL MODELING AND POLLUTANT MANAGEMENT
Corse credit	3+0
Objective of Course	To acquaint and equip the students with the hydrodynamics of fluid and pollutant flow and the impact analysis of contaminant transport through modeling
Course Content	 Theory UNIT I Hydrodynamics in flow through porous media, Hydrodynamic dispersion, diffusion, convection equation. UNIT II Analytical and numerical models of contaminant transport in unsaturated soil profile and ground water. UNIT III Water quality management in lakes and reservoirs; physical characteristics; hydrologic and chemical budgets; bio-geochemical processes of pollutants; assessment methods. UNIT IV Classical wastewater problems; Water reclamation, reuse, water quality constraints and considerations for reuse in irrigation and industry; Biological wastewater treatment. UNIT V Modern stream pollution problem. Quality of groundwater and souces of contaminants. Cost economics – environment impact assessment.
References:	 Larry W Mays 1996. Water Resources Handbook. McGraw Hill. Metcalf and Eddey 1994. Wastewater Treatment Engineering and Reuse. John Wiley. Soli J Arceivala 1998. Wastewater Treatment for Pollution Control. Tata McGraw-Hill.
Course Outcomes	CO1: Understand hydrodynamics in the flow through porous media, including hydrodynamic dispersion, diffusion, and the convection equation, essential for comprehending fluid movement in porous materials.

						 CO2: Analyze both analytical and numerical models used for contaminant transport in unsaturated soil profiles and groundwater, demonstrating proficiency in assessing and predicting contaminant movement. CO3: Evaluate water quality management in lakes and reservoirs, comprehending physical characteristics, hydrologic and chemical budgets, as well as bio-geochemical processes of pollutants, demonstrating the ability to assess and manage water quality in these environments. CO4: Analyze classical wastewater problems, explore water reclamation and reuse strategies, understand water quality constraints for reuse in irrigation and industry, and apply biological wastewater treatment methods. CO5: Assess modern stream pollution issues, groundwater quality, and sources of contaminants, demonstrating proficiency in cost economics related to environmental impact assessments for sustainable water resource management. 											
Mapping bet	weer	n COs	s with	n POs	and F	SOs											
Please refer	map	oping	of P	O and	I PSC) for	the st	yle o	f map	ping.							
	Mapping between Cos, POs and PSOs																
CO				PO PSO											1		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
<u>CO1</u>																	
CO2																	
CO3																	
CO4					-	-		-									
CO5																	

Course code	SWE 606
Course title	PLANT GROWTH MODELING AND SIMULATION
Corse credit	3+0
Objective of Course	To acquaint and equip the students with the simulation and modeling techniques in the soil, plant and water environment for crop growth
Course Content	Theory UNIT I Introduction to crop growth modeling. Simulation and simulation techniques. Types of models and modeling approaches. UNIT II Relational diagram for principal process, structures of a generalized agricultural simulator. UNIT III Input environment and techniques of monitoring plant environment, process and aspect of growth and development. Input yield models. UNIT IV Quantitative analysis of plant processes light photo-syntheses, received as a spect of growth and development.
	respiration,
References:	 growth, water uptake etc. and their mathematical modeling. Loomis RS, Connor DJ.1992. Crop Ecology: Productivity and Management in Agricultural System. Cambridge Univ. Press. Spedding CRW. 1979.An Introduction to Agricultural Systems. Applied Science Publ. Thornley JHM & Johnson IR. 1990.Plant and Crop Modelling. A Mathematical Approach to Plant and Crop Physiology. Clarendon Press. Oxford Science Publ
Course Outcomes	CO1: Understand the fundamentals of crop growth modeling, simulation techniques, and the various types of models and approaches used in agricultural modeling.
	CO2: Analyze relational diagrams for principal processes and structures within agricultural simulators, demonstrating proficiency in the design and layout of generalized agricultural simulation models.CO3: Evaluate the input environment and techniques for monitoring plant environments, comprehending the growth and developmental
	processes, and utilizing input-yield models in agricultural simulation. CO4: Conduct quantitative analysis of plant processes such as light photosynthesis, respiration, growth, water uptake, etc., and demonstrate proficiency in their mathematical modeling within the context of crop growth.
	CO5: Apply theoretical knowledge and mathematical modeling skills to analyze and simulate plant processes effectively, integrating these models for a comprehensive understanding of crop growth and development in agricultural systems.
Mapping between COs w	
	f PO and PSO for the style of mapping.
Mapping between Cos,	

CO		РО												PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1																
CO2																
CO3																
CO4																
CO5																

Course code	SWE 607
Course title	ADVANCES IN IRRIGATION AND DRAINAGE
Corse credit	2+0
Objective of Course	To acquaint and equip the students with the advance application of irrigation and drainage system along with applicability of various models.
Course Content	Theory UNIT I Advances in surface irrigation systems- surge irrigation: effect of surgingon surface flow hydraulics, cablegation: water supply management. UNIT II Atomization in sprinkler and micro irrigation system; multipurpose and special uses of micro irrigation. UNIT III Synthetic materials for drainage systems. Environmental issues related to drainage. Socio-economic impacts of drainage systems. UNIT IV Controlled drainage for reducing agricultural non point pollution. Application of simulation models for drainage systems.
References:	 FAO. 1982. Mechanized Sprinkler Irrigation. FAO Irrigation & Drainage Paper 35. FAO. 1989. Guidelines for Designing and Evaluating Surface Irrigation System. FAO Irrigation & Drainage Paper 45. Keller J & Bliesner RD. 1990. Sprinkler and Trickle Irrigation. Chapman & Hall. Ritzema HP. (Ed.). 1994. Drainage Principles and Applications. ILRI. Walker WR & Skogerboe GV. 1987.Surface Irrigation: Theory and Practice. Prentice Hall
Course Outcomes	 CO1: Comprehend and analyze advancements in surface irrigation systems, including surge irrigation and cablegation, understanding their impact on surface flow hydraulics and effective water supply management. CO2: Evaluate atomization techniques in sprinkler and micro irrigation systems, demonstrating an understanding of their varied applications and specialized uses in agricultural contexts. CO3: Assess synthetic materials utilized in drainage systems, critically examining the environmental issues linked to drainage, and analyzing the socio-economic impacts associated with the implementation of drainage systems.

				CO4: Understand the concept of controlled drainage aimed at reducing agricultural non-point pollution and proficiently apply simulation models to design and optimize drainage systems for effective pollution control.												
	CO5: Apply theoretical knowledge and analytical skills to assess and propose solutions for optimizing irrigation and drainage systems integrating advancements and techniques for sustainable agricultura practices.												vstems,			
Mapping be																
Please refe	r maj	pping	of P	O and	d PSC) for	the st	yle of	f map	ping.						
Mapping b	etwe	en Co	s, PO)s and	d PSC)s										
CO			<i>.</i>				PO							PSC)	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1																
CO2	\mathbf{y}_2															
CO3																
CO4																
CO5																

Please label the file with the Department Name

Course code	Solar Energy System							
Course title	REN 501							
Corse credit	3 (2+1)							
Objective of Course	1. To provide knowledge, understanding and application oriented skills on renewable energy sources and relevant technologies towards their effective							
	utilization. 2. To provide knowledge of solar energy, biomass energy concept and							
	applications.3. To understand the important parts of a biogas plant, design and principle of							
	bio-diesel.4. To understand the design of wind mills and applications, turbines and							
	generators for small scale hydroelectric generation.5. To impart knowledge of geothermal, ocean and tidal energy and their applications.							
Course Content	Theory							
	<u>UNIT I</u>							
	Importance of solar energy and its application in crops drying, air and water heating, cooking, lighting, seed treatment and preservation.							
	UNIT II							
	Principles and design criteria of solar water heaters, solar crop dryers,							
	solar cookers and solar absorption refrigeration systems, storage of energy							
	by rock, water and phase change medium . UNIT III							
	Measurement of solar radiation, reflectivity, absorptivity, transmissivity							
	and thermal conductivity.							
	UNIT IV							
	Design of photovolatic cells. Economics of various solar energy systems. Operation and maintenance of solar operated appliances systems and equipments							
	Practicals:1. Study of the environmental parameters measuring instruments.							
	2. Measurement and estimation of solar radiation availability.							
	 Determination of LAT, day length Estimation of thermal losses, overall heat loss co-efficient of FPC. 							
	 Estimation of thermal losses, over an heat loss co-efficient of PTC. Testing and performance evaluation of solar air heater. 							
	 Testing and performance evaluation of solar an neater. Testing and performance evaluation of the solar water heater. 							
	 Testing and performance evaluation of the solar dryers Testing and performance evaluation of the solar dryers 							
	 8. Study of the selective coatings. 							
	9. Performance study of solar still.							
	10. Design and Performance evaluation of solar PV systems.							
	11. Visit of Solar Energy Application & Testing Centers							
References:	1. Sukhatme S.P. Solar Energy. Tata McGraw-Hill Publishing company ltd., New Delhi.							
	2. Grag H.P. and Prakash J. solar energy fundamentals and applications. Tata							
	McGraw-Hill publishing company Ltd., New Delhi.							
	3. J A Duffie and W.A.Beckman. Solar Engineering of Thermal processes.							
	5. J A Duffie and W.A.Beckman. Solar Engineering of Thermal processes.							

Post Graduate Master Program in Renewable Energy Engineering (OLD)

			John Wiley.												
		4			•	J.F.K	reider	, Prir	ciples	s of so	lar Eng	ineering	g Mc	Graw	-Hill,
			197						1		C	, ,			2
		5	. Gar	g H.P	. Trea	atise o	on sol	ar En	ergy,	Wiley	Inter so	cience F	Public	ation	, New
			York.												
		6	5. Hall. C.W. Drying Farm Crops. AVI publishing co. west port connecticu												
Course		A	t the	end o	f the	cours	e, lea	rners	will b	e able					
Outcomes										id foun	dation t	for deve	lopin	g the	use of
					nergy	•			•						
					•				solar	technol	logy for	those v	vho w	vish to) work
					ble er	•••	•		1.1			•,			. 1
												ns, its			
			interactions between the components. This includes all renewable er technologies, different storage technologies, distribution grid, smart												
				•				•		•		stand alo	•		•
					ated d					oi, and		stand an		syster	ns and
										nd tecl	hnical a	spects a	and p	rincip	les of
												e (solar			
					•••							omic an			
			echno		-	,,	.,			steps a			ur jon		"PP-J
Mapping be	etwee			-		d PS	05								
Please refe								ne stv	le of	mann	ing.				
Mapping b								10 505	10 01	mapp	8'				
CO			/				PO							PSC)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															

Course code	Wind Energy Technology
Course title	REN 502
Corse credit	3 (2+1)
Objective of	1. To acquire the in-depth knowledge of wind energy conversion systems.
Course	2. To study the wind potential mapping, estimation and analysis of wind data.
	3. To acquire knowledge regarding mechanism of wind energy and different
	types of wind machines available to harness wind power.
	4. To design wind turbine for irrigation as well as for power generation.
Course Content	Theory: <u>UNIT I</u>
	Wind machine types, classification, parameters. wind resource assessment- measurement, prediction and wind mapping, Wind velocity and power from the wind, Concept of wind energy and its use in water power generation. UNIT II
	Wind turbine aerodynamics, momentum theories, basic aerodynamics, airfoils and their characteristics, Horizontal Axis Wind Turbine (HAWT) - Blade Element Theory, wake analysis, Vertical Axis Wind Turbine (VAWT)
	aerodynamics. HAWT rotor design considerations, number of blades, blade profile, 2/3 blades and teetering, coning, power regulation, yaw system, tower.
	UNIT III
	Wind turbine loads, aerodynamic loads in steady operation, wind turbulence,
	static, WECS control system, requirements and strategies. Wind Energy
	Conversion System (WECS) siting, rotor selection, Annual Energy Output
	(AEO). Synchronous and asynchronous generators and loads, integration of
	wind energy converters to electrical networks, inverters. Testing of WECS.
	Noise. Miscellaneous topics. Mechanical and electrical applications, wind
	farms, Interfacing, Maintenance, Management of crops irrigated by wind
	pumps. Management of power generated by wind mill.
	Practical
	1. Study of wind measuring instruments.
	2. Energy estimation from wind data.
	3. Design study of wind mill rotor blades.
	4. Studies on Wind power generators
	5. Problems on forces on the blades and thrust on turbines.
	6. Study of water wind pumps.
	7. Design calculations of wind pump for drip irrigation
	8. Studies on velocity and power duration curves .
	9. Visit to wind farms and studies on wind farm economics.
	10. Study on wind energy storage system
References:	1. D.M.Simons, Wind Power, Noyes Data Corporations, 1975
	2.T.N.Veziroglu (Ed), Alternative Energy Sources, Vol. 5, Mcgraw Hill, 1977.
	3. Thomas Ackermann Wind Power in Power Systems.
Course	At the end of the course, learners will be able to acquire knowledge regarding
Outcomes	mechanism of wind energy and different types of wind machines available to
	harness wind power. Able to design wind turbine for irrigation as well as for
	power generation.
	CO1: To describe how wind energy is harnessed to create electricity.
	CO2: To state the major pros and cons of using wind energy.

												d to cre			
		CO4: To contribute to the complex task of wind farm project development.													
		CO5: To simulate and analyze the design of wind farms, lay outs etc.													
Mapping	betwee	veen COs with POs and PSOs													
Please re							the st	yle of	f map	ping.					
Mapping								•	-	• •					
CO		PO PSO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1															
CO2															
CO3															
CO4															
		_	-	_	-	-	-			-	-				_

Course code	Biomass Energy Engineering
Course title	REN 503
Corse credit	3 (2+1)
Objective of	1. To understand the bio-conversion technologies and fuels system, types of
Course	biomass derived fuels and energy, thermochemical conversion of biomass to
	heat and power, value adding of agro-residues.
	2. To study various properties thermochemical and biochemical properties of
	biomass.
	3. To design different biomass based technology for energy generation.
	4. To provides overall information on concepts, tools and techniques for
	converting the different biomass into various energy forms for starting the
	biomass based energy production and its management.
Course Content	Theory:
	<u>UNIT I</u>
	Identification of various forms of biomass. biomass production and potential
	in India, Plantation for renewable energy i.e. wood as a fuel charcoal, producer
	gas. Different types of species for Energy plantation. clean development
	mechanism CDM
	UNIT II
	Thermo-chemical conversion of biomass, reactor configuration, gas
	conditioning systems, fast pyrolysis technologies, technologies for production
	of bio-liquids, standards of bio-oils, sizing/selection of gasifiers, open - top
	reburn down draft gasifier, performance evaluation of different gasifiers,
	furnaces, stores, briquetting plants. Biomass cogeneration, application of
	biomass for thermal applications, briquetting, water pumping, power
	generation, cooking. Technologies for conversion of biomass to electricity.
	Economics of various systems of biomass run plants, equipments, operation
	and maintenance. Design of rural base industries run on biomass
	Practicals:
	1. Proximate analysis of solid fuels.
	2. ultimate analysis of solid fuels.
	3. Calculation of High Heat Value of solid and liquid fuels.
	4. Calculation of Low Heat Value of gaseous fuels.
	5. Determination of stoichiometric air requirement and excess air.
	6. Gravimetric analysis, volumetric analysis and conversion.
	7. Study and use of Bomb calorimeter.
	8. Study of Junker's gas calorimeter.
	9. Study of Gas Chromatography.
	10 Study of different types of furnaces.
	11. Testing of down draft gasifier.
	12. Testing of open core gasifier.
	13 Study of briquetting machines and wood burning stoves.
References:	1. D O Hall, G W Barnard, and P A Moss, Biomass for Energy in the
mun mus.	Developing Countries, Current Roles, Potential, Problems, Propects.
	Pergamon Press Ltd, 1982.
	2. L P White, L G Claskett, Biomass as Fuel. Academic Press, 1981.
	3. T B Read, Biomass Gasification Principles and Technology. Energy

			Teo	hnole	ov P	view	No	67 N	loves	Data (ornorat	ion, US	Δ 10	81	
		1									_	grofore:			Doto1
		4.						•••		gn De	ansity A	grotore	stry.	JIVIAJ	Pater
			U		•			arat, 1		_				_	_
		5.										mall Sca			
			Eng	gine l	Syste	ms. 1	Fried	r Vie	weg	& So	hn Ver	lag Sge	esells	chaft	mbh,
			Braunschweig, 1984.												
		6.	D W Robinson and R C Mollan, Energy Management and Agriculture.												
			Elsevier Science Publishers, 1982.												
Course		At	t the end of the course, learners will be able												
Outcomes		C	O1: To understand the bio-conversion technologies and fuels system,												
		ty	ppes of biomass derived fuels and energy, thermochemical conversion												
		of	f biomass to heat and power, value adding of agro-residues.												
			CO2: To develop knowledge in properties of biomass and energy												
		co	nver	sion _l	oroce	ss.									
		C	03: [Го со	mpai	e the	cha	racter	istics	of pro	oducts	obtaine	d fro	m bio	omass
			rolys		•										
		1.	•		Inder	stand	the	basi	cs of	biom	lass ga	sificatio	on ar	nd ga	asifier
			sign								0			0	
			U	o ass	ess th	e pote	ential	of ele	ectrica	l powe	er produ	ction fro	om bi	omas	s.
Mapping be	tweer					-				r	1				
Please refer							the st	yle of	' map	ping.					
Mapping b	etwee	en Co	s, PO	s and	I PSC)s									
СО							PO							PSC	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	Biogas Technology and Mechanism
Course title	REN 504
Corse credit	3 (2+1)
Objective of Course	 To provide the in-depth knowledge about biogas technology and its mechanism in detail to use the biogas as domestic as well as commercial fuel. To select, estimate and analyzed the biogas technology, chemical and physical conditions and get acquainted with various biogas appliances.
<u> </u>	3. To understand the important parts of a biogas plant.4. To analyze the different effluent materials generated by industries and based on availability to design appropriate size of biogas plant.
Course Content	Theory: <u>UNIT I</u> Biogas Technology: Introduction, historical background, digestion process, factors enhancing/ inhibiting biogas production.
	Bio-chemical and Microbial Aspects: Biogas mechanism, enhancing the biogas production and its purification.
	Biogas Plant: Systems, Types of biogas plants, classification, design of a biogas plant (cow dung and organic waste), structural strength, selection of site and size, construction technique material requirement, high rate digesters, night soil linked biogas plant.
	<u>UNIT II</u> Biogas Distribution and Utilization: Properties of biogas, different uses, design of biogas distribution system, pressure and flow measuring devices, safety devices, biogas fittings, principles of dual fuel biogas engines, its limitations, biogas appliances including thermal and cooking efficiency test.
	Effluent : Handling of effluent of biogas plant (cow dung based, sanitary latrine attached and agro industrial wastes), effluent treatment and management effect of slurry on crop and fish production. Integrated recycling of organic wastes.
	Alternate Feed Material: Study of biogas plant for distillery and sugar mills effluent, willow dust, agro-wastes, agro and processing industry wastes.
	UNIT III Repair and Maintenance : Repair and maintenance of biogas plants
	Practical:
	 Study on fixed dom type biogas plants. Study on floating drum type biogas plants. Study on determination of calorific value of biogas. Study on design calculation of floating drum type biogas plant. Determination of N, P and K contents of the fresh and digested slurry by chemical analysis.
	6. Study of constructional details of willow dust based biogas plants.7. Testing of biogas burner for heat transfer, thermal and cooking efficiency.

		8.	Te	sting	of bio	gas la	mp								
		9.		termi		•	-	COD							
		10	Vis	it of b	iogas	bottl	ing pl	ant							
References	:	1.			•		• •		Mal	ndi.; B	iogas T	echnolo	ogy:	A Pra	ctical
			. Khandelwal, K.C. and S.S Mahdi.; Biogas Technology: A Practical Hand Book, Tata McGraw Hill Pvt. Co.												
		2.													
			Rathore N.S., Kurchania A.K., Biomethanation Technology, Apex												
			Publications, Udaipur, 2006												
		3.													
			utilization-Himanshu Publication.												
Course		At	t the end of the course, learners will be able												
Outcomes			CO1: To characterize different biomass feedstocks and wastes based on its												
		con	onstituents and properties												
			CO2:To understand and evaluate various biomass pre-treatments and												
		-		•	-				heir a	pplicat	oility fo	r differe	ent bi	omass	s type
				ass co					c			1 .	• •	• ,•	1
							-				on, pyr	•	0		
				on etc		oduci	.1011 (JI Va	iue a	aded i	oio-proc	lucis, D	logas	, 010	-CNU
		0				d ba	sics	of bi	ofuel	s their	produ	ction to	echno	logie	s and
				ons ir							produ	cuon a	cenne	10510	5 unu
Mapping be	tweer						- 85								
Please refer	r map	ping	of P	O and	I PSO) for t	the st	yle of	map	ping.					
Mapping b	etwee	en Co	s, PC	s and	I PSO	s							T		
СО				1		T	PO		r	1				PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3 CO4									-						
04															

Course code	Direct Energy Conversion System
Course title	REN 505
Corse credit	2 (2+0)
Objective of	1. To develop a comprehensive technological understanding in solar PV
Course	system components.
course	2. To provide in depth understanding of design parameters to help design and
	simulate the performance of a solar PV power plant.
	3. To pertain knowledge about design, planning, project implementation and
	operation of solar PV power generation.
	4. Design and simulate a PV power plant using software tool, Plan, project
	implementation, operation and maintenance.
	5. Carry out techno-economic environmental performance evaluation of a
	solar PV power plant.
Course Content	Theory:
	UNIT I
	Basic science of energy conversion. Physics of semiconductor, fabrication
	and evaluation of various cells.
	UNIT II
	Solar energy and its utilization, solar cell, thermo-electric and thermonic
	devices, wind energy, fuel cell, magneto hydrodynamic energy conversion,
	biogas theory, design of energy converters with special reference to rural
	living.
	UNIT III
	Applications of solar cells in photovoltaic power.
References:	1. Non- conventional Energy sources by G. D. Rai, Khanna Publishers, 2-B,
	Nath Market, Nai Sarak, Delhi-110006.
	2. D.M.Simons, Wind Power, Noyes Data Corporations, 1975
	3. T.N.Veziroglu (Ed), Alternative Energy Sources, Vol.5, Mcgraw Hill, 1977.
	 Thomas Ackermann Wind Power in Power Systems
	5. Grag H.P. and Prakash J. solar energy fundamentals and applications. Tata
	McGraw-Hill publishing company Ltd., New Delhi.
	6. Garg H.P. Treatise on solar Energy , Wiley Inter science Publication , New
	York.
	7 Tony Burton, David Sharp and Nick Jenkins; Wind Energy: Handbook,
	John Wiley & Sons Ltd., West Sussex, England.2001.
Course	At the end of the course, learners will be able
Course Outcomes	CO1: To understand the physical principles of the photovoltaic (PV) solar
Outcomes	cell and what are its sources of losses.
	CO2: To know the electrical (current-voltage and power-voltage)
	characteristics of solar cell, panel or generator and how the environment
	parameters influence it.
	CO3: To know the most important characteristics of the elements within a PV
	system, battery and charge controller, DC/DC converter, DC/AC converter
	(inverter) and loads. CO4: To understand the role of solar energy in the context of regional and
	global energy system, its economic, social and environmental implications,
	and the impact of technology on a local and global context.
	CO5: To know the main lines of research in the field of photovoltaic

	technology and solar energy.														
Mapping b	Mapping between COs with POs and PSOs														
Please ref	Please refer mapping of PO and PSO for the style of mapping.														
Mapping	pping between Cos, POs and PSOs														
СО		PO PSO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	Alternate Fuels Technology and Applications
Course title	REN 506
Corse credit	3 (2+1)
Objective of	1. To get acquainted with various alternate fuels, their applications and also to
Course	learn safety factors of alternate fuel, efficiency, economics and commercial
	considerations.
	2. To impart the knowledge of basics of alternative fuels for internal combustion
	engine and alternative drive systems for automobiles, principle of solar energy
	collection
	3. To impart the knowledge of methods of production of bio gas, methanol,
	ethanol, SVO, bio diesel and various aspects of electrical and hybrid vehicles
	4. To study the use of various gaseous fuels and hydrogen for internal
	combustion engine application.
Course Content	Theory
	UNIT I
	Bioconversion Techniques, direct combustion, Pyrolysis, Flash pyrolysis,
	Formulation and gasification.
	C C
	UNIT II
	Utilization of industrial waste such as Biogases, improved cook stoves.
	Industrial biomass combustion systems gasification sizing beneficiation of
	Fuels, various sources of biofuels, Processing of various agro products for
	biofuels combustion characteristics of biofuels, working process in IC engines.
	Fuels efficiency, Fuel blends dual Fuel operation, Bio - gas generation and
	purification technology, biogas as cooking and IC engine fuel, performance
	evaluation of biogas as vehicle fuel, environmental pollution with conventional
	and alternate fuels.
	UNIT III
	Current biofuels scenario in India. availability of raw material technology for
	production of biofuels and developments in the sector. standardization and
	· ·
	specifications for biofuels, clean development mechanism and biofuels.
	Practicals:
	1. Proximate and ultimate analysis of solid fuels.
	2. Calculation of High Heat Value of solid and liquid fuels.
	3. Calculation of Low Heat Value of gaseous fuels.
	4. Study of the Bio fuels characteristics – proximate analysis and ultimate
	analysis
	5 Determination of calorific value of bio-fuels and biogas.
	6. Design of fixed dome type and movable drum type biogas plants.
	7. Study of the biogas purification
	8. Study of the bio-fuels purification
	 9. Performance evaluation of biogas as IC engine fuel
	10. Performance evaluation of biofuels as IC engine fuel
References:	1.Pathak B.S. and Srivastva NSL. Biomass based Decentralized Power
Mererences:	
	Generation . SPRERI.
	2. Selected Web sites www.ybiofuels.org/bio-fuels/history-biofuels.html
	3. Gerpen J. Van, Shanks, Pruszko R. Clements D and Knothe G 2004. Bio-
	diesel Production Technology August-2002-January 2004. National

]	Renev	wable	Ener	gy La	borat	ory (www.	nrel.go	v), <u>US</u> .				
Course		At	At the end of the course, learners will be able												
Outcomes		CO	CO1: To understand broad comprehension of alternative transportation fuels												
		and	nd their production technologies.												
			CO2: To explain various properties, methods of production of Bio gas,												
			nethanol, ethanol, SVO, Bio diesel.												
			CO3: To illustrate the use of hydrogen and various gaseous fuels, reformulated												
			onventional fuels & future alternative fuels for internal combustion engine												
			pplication												
			CO4: To explain the various aspects of electrical and Hybrid vehicles. CO5: To discuss economic considerations of alternative fuels.												
							nic co	nside	ratior	is of all	ternativ	e fuels.			
Mapping be							4h a a4	م اس	f						
Please refe Mapping b	-						the s	yie o	і шар	ping.					
CO	elwei		5, I C	75 and	1130	78	PO							PSC	
	1	2	3	4	5	6	7	8	9	10	11	12	1	$\frac{150}{2}$	3
CO1	1	4	5	-	5	U	1	0		10	11	12	-		5
CO1 CO2															
CO2 CO3															
CO4															
CO5															

Course code	System Simulation and Computer Aided Problems Solving in Engineering
Course title	REN 507
Corse credit	2 (1+1)
Objective of Course	 To impart fundamental knowledge to students in the latest technological topics on Computer Aided Design, Computer Aided Manufacturing and Computer Aided Engineering Analysis and to prepare them for taking up further research in the areas of Renewable Energy. To create congenial environment that promotes learning, growth and imparts ability to work with inter-disciplinary groups in professional, industry and research organizations. To broaden and deepen their capabilities in analytical and experimental
Come Contact	 research methods, analysis of data, and drawing relevant conclusions for scholarly writing and presentation. 4. To provide guidance to students for their choices in research and professional career outlook and to encourage students to take up research.
Course Content	 Theory <u>UNIT I</u> Concept, advantages and limitation of dimensional analysis, dimensions and units, fundamental and derived units, systems of units, conversion of units of measurement, conversion of dimensional constants, conversion of equations in different units, complete set of dimensionless products and their formulation methods- the Rayleigh's method, Buckingham's Pi theorem and other methods. <u>UNIT II</u> Mathematical modeling and engineering problem solving. UNIT III Computers and softwares – software development process – Algorithm design, – program composition- quality control- documentation and maintenance – software strategy. <u>UNIT IV</u> Approximation- round off errors- truncation errors. Nature of simulationsystems models and simulation- discreet event simulation- time advance mechanisms- components of discreet event simulation model. Simulation of singular server que- programme organization and logic- development of algorithm. <u>UNIT V</u> Solving differential equation on computers- modeling engineering systems with ordinary differential equations- solution techniques using computers 1. Averill M. Law & W David Kelton.2000. <i>Simulation Modeling and Analysis</i>. McGraw Hill.
	 Analysis. McGraw Hill. Balagurusamy E. 2000. Numerical Methods. Tata McGraw Hill. Buckingham E. 1914. On Physical Similar System. Physical Reviews 4:345. Langhar H. 1951. Dimensional Analysis and Theory of Models. John Wiley & Sons. Murphy J. 1950. Similitude in Engineering. The Roland Press Co. Robert J Schilling & Sandra L Harries. 2002. Applied Numerical Methods for Engineers Using MATLAB and C. Thomson Asia. Simpson OJ. 2000. Basic Statistics. Oxford & IBH.Singh

			RP. 2	2000.											
		6.	Com	puter	Appli	catio	n in F	ood '	Techn	ology.	Acaden	nic Pres	s. Ste	ven (Chopra
			-				1989.			0.					· · I · ·
		7		•					naina	ars M	cGraw]	L I ;11			
						-	-	-						1 14	- 41 1-
		8.		U								. Num	erica	i M	etnoas
											aw Hill				
		9.	Wilk	s SS.	1962.	Math	hemat	ical S	Statist	ics. Joh	n Wile	y & Son	S		
Course		At	the e	end of	the c	ourse	, learı	ners v	vill be	able					
Outcomes		C	0 1: T	lo app	oly/de	velop	o solu	tions	or to	do rese	earch in	the are	as of	Desig	gn and
		sir	nulati	ion in	Rene	wabl	e Ene	rgy E	ngine	ering.					
		C	02: 7	To de	eveloj	p al	bilitie	s and	1 cap	abilitie	s in d	evelopin	ng ar	id ap	plying
				er so	ftware	e and	l harc	lware	to r	nechan	ical de	sign an	d ma	nufac	cturing
		fie	elds.												
												luct exp			
			•		•		•	•	sults	with m	odern 1	nathema	atical	/ sci	entific
							ware								
			CO4: To design and validate technological solutions to defined problems and communicate clearly and effectively for the practical application of renewable												
		co	mmu	nicate	clear	rly an	d effe	ective	ly for	the pr	actical	applicat	ion o	f rene	ewable
			ergy.												
Mapping be															
Please refe							the st	yle of	f map	ping.					
Mapping b	etwee	en Co	s, PO	s and	I PSC)s									
CO						-	PO							PSC	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															

Course code	Green House Technology and Management
Course title	REN 508
Corse credit	3 (2+1)
Objective of	1. To provide the in-depth knowledge about greenhouse design, energetics,
Course	production technique, passive heating concept and evaporative cooling etc.
	2. To get knowledge of thermal energy flows, analysis of green house,
	instrumentation and control in green house.
	3. To equip with fundamental understanding, knowledge and skills to contribute
	in the practice of energy efficient green house.
	4. To design and develop a different types of energy efficient green house.
Course Content	Theory
	UNIT I
	Introduction: Importance, Scopes, types of greenhouses and economics.
	UNIT II
	Greenhouse construction: Orientation, selection of site, floor plan, and
	construction materials designs and layout of greenhouse, load calculation and
	construction metrology.
	Greenhouse environment and controls: Constituents of greenhouse environment
	and their effect on crop growth, type of heat loss, and calculation of heat
	requirement, greenhouse heating systems, heat sources, conservation of energy
	in greenhouse, different types of greenhouse cooling system, design of
	greenhouse cooling systems, greenhouse lighting system and design considerations, greenhouse environment control systems and automation,
	mathematical modeling of greenhouse environment greenhouse environment
	control instrumentation.
	UNIT IV
	Root Substrate Management: Soil based and soil less substrates, soil solarization
	and soil temperature modeling hydroponics techniques, greenhouse irrigations
	systems and controls, fertigation programmes, nutrition management, insect and
	disease management in greenhouse Post Harvest
	<u>UNIT V</u>
	Technology & Marketing : Packaging, grades & standards, post harvest of fresh
	flowers, market system of greenhouse products.
	Practicals:
	1. Studies on greenhouse cooling system.
	2. Performance evaluation of fan-pad cooling system.
	3. Studies on greenhouse irrigation system.
	4. Studies on greenhouse automation systems.
	5. One week training/internships in greenhouse technology and management.
	6. Studies on different root substrates and hydroponics cultivation.
	 Studies on different root substrates and hydropomes card varion. Studies on greenhouse lighting system.
References:	1. Paul V.Welson; Greenhouse operation & management prentic Hali,New
ACICI CHCU3,	
	Jersey.
	2. Hauon,J.J.,Holley,W.D. and Golds berry, K.L. Greenhouse Management,
	Springer- verlag,Berlin.
	3. Robert MC Mohan; Introduction to greenhouse production, Ohio Agril. Edu.
	Curriculum materials Service.

			•		J. and 1 aut			a, T.	Edite	r: A. 1	kauo, (Greenho	use E	Enviro	nment
								eenho	nise T	echnol	ogy N	arosa Pu	ublica	tion 1	Delhi
Course		-							ill be		059,10	a105a 1 t	ionea	uon, 1	Juni.
Outcomes		CO incl CO arcl CO imp	 1: T luding 2: T hitect 3: T ortan 	o un g the i o ge ure ai o arti ice fo	dersta meani et det nd pas culate r all.	and t ing of ailed ssive e the	he p the t knov system elem	hysica erm r wledg ms de ents o	al bas adiativ ge abo sign a of ene	sis of ve force out the t vario ergy ef	ing e impo us builo ficiency	tural gr ortance ding typ y in gre	of pa ologie en ho	assive es. ouse a	solar and its
											of micro	o-climat	e m	coom	ig and
			energy efficiency of green house environments.												
			CO5: To demonstrate knowledge related to human comfort due to ambient heat exchange in green house.											nt neat	
Manninghat							•								
Mapping bet							4 1 • • • •	ابتا م	P						
Please refer							the s	lyle o	i map	ping.					
Mapping be	twee	en Co	s, pu	s and	1 PSC	JS	DO							DOC	
СО	1	•	2	4	_		PO 7	1	•	10	11	10	1	PSC	
<u> </u>	1	2	3	4	5	6	/	8	9	10	11	12	1	2	3
<u>CO1</u>								-					_		
CO2															
CO3															
CO4															
CO5															

Course code	Integra	ited F	Rural	Ener	gy Pl	anni	ng an	d Orga	nizati	on			
Course title	REN 5			21101	5]		- <u>5</u>	u orge					
Corse credit	3 (3+0)												
Objective of			e an	under	stand	ing a	nd ey	perien	ce of d	lifferent	aspe	cts of	Rural
Course		elopm		anaei	build	ing u		perion	00 01 0		usper	000	Iturui
		-		nertis	e in i	nlann	ino a	nd mai	nageme	ent of ru	ıral d	levelo	nment
			-	-		-	-		-	opment			-
	~ -	gy coi			ocus	on F	artici	patory	ueven	opment	using	, iche	wable
			-		ivo d	1-11	and c	mploy	mont o	oriented	to at	tract	bright
			•							us, ensu			e
				-				-		ius, ensu	ing (sity –
Course Content		stry iı	nena	ce un		SK FI	ograi	lille					
Course Content	Theory												
	<u>UNIT I</u>				0								
	-			cope of	of rura	al ene	rgy p	lanning	g and c	organisat	ion p	resent	status
	and futu	ure th	rusts.										
	<u>UNIT I</u>	I											
	Objecti	ves o	f inte	grated	l ru	ral	energ	y pla	nning,	conver	ntiona	al and	non-
	convent	tional	sou	irces	of e	nergy	, bio	mass,	photo	synthesis	s, eff	ïcienc	y of
	energy	conve	ersion	by di	ffere	nt pla	nt sp	ecies, p	lantati	on for e	energy	y, woo	d as a
				•		-	-	-		ion, equ			
			-		•		•	-		g solar,	-		•
				-		-		•		ig, pow			-
	various			-	-		-	-	· -	able sou	-		
					-								
	^		-		llages	, ind	ustrie	s run s	solely o	on integ	rated	sourc	ces of
	renewa		ergy.										
		<u>UNIT III</u>											
		Operation and maintenance of industries and plant.											
References:	1. N.S	S.Rath	ore,	A.N.I	Math	ur an	d A.	S. Sol	anki. 🛛	Integrate	d Ru	ıral E	Energy
	Pla	nning	. Agi	otech	Publ	ishing	g Aca	demy,	Udaipu	ır.			
	2. Sor	naseh	hura	N. Ru	iral E	nergy	. Ster	ling Pu	blisher	s Pvt. Lt	d., No	ew De	lhi
	3. R.A	A. Me	yers,	Hand	Book	of E	nergy	Techn	ology.	Jhon Wi	leys S	Sons.,	New
		rk, 19					20				-		
		-		and F	Biswa	s, A.F	K., Int	egrated	l Rural	Energy	Plann	ning. F	Butter
		rth, U	•			~,	,	- 6		87		8,	
Course	At the e				lear	nere v	vill be	ahle					
Outcomes									/ Anal	yst as a	careei	r	
Outcomes										or Vol			ncv to
	serve fo							Duil		/ 01	y		- ,
						•		Researc	h on F	Rural De	evelor	oment	using
	differer										1		0
Mapping between													
Please refer mapp	oing of P	0 and	l PSC) for 1	the st	yle of	f map	ping.					
Mapping between	Cos, PC)s and	I PSC)s									
СО					PO							PSO)
	2 3	4	5	6	7	8	9	10	11	12	1	2	3
CO1													
CO2													
CO3													

Course cod	le	Η	eat T	ransf	er In	Sola	• Ene	rgy							
Course title	е	R	EN 5 1	10											
Corse cred	it	3	(2+1)												
Objective of	of	1.'	To a	ticula	te th	e tec	hnica	1 and	ecor	nomic	fundam	entals	of so	lar t	hermal
Course			energ	y con	versio	on use	ful to	socie	ty an	d indus	stry.				
		2."	To de	escrib	e the	spec	trum	of po	ossibl	e solar	therma	al techr	nologi	es to	assist
		i	indust	trial p	roces	sing c	or pov	ver pr	oduct	ion.			-		
		3.'	To as	sess s	olar t	herma	al tecl	nolog	gies to	o identi	ify the g	greatest	solar	utilit	y for a
		(client	in a g	given	locale	.					-			-
Course Co	ntent	T	heory	7											
		U	NIT I												
					f hea	t trai	nsfer.	theor	rv of	heat	conduc	tion. N	lather	natic	al and
			-						•		lems, ti				
					•					-					
						•					er, heat				
			-				nd h	eat ex	chan	gers. F	Radiatio	n heat	transi	ter b	etween
		bl	ack a	nd gra	ıy boc	lies.									
		<u>U</u>	NIT I	I											
		He	eat tr	ansfe	in s	olar	air ai	nd wa	ter h	eaters.	Energy	v balan	ce eq	uatio	ns and
		pe	rform	nance	predi	ction	analy	sis. H	eat tr	ansfer	and ene	rgy bal	ance e	equat	ions of
		-			-		-				and gre			-	
			ractic		, ~			,.			<u>8</u>		j		
					roorar	nmino	and r	perform	nance	predict	ion of bo	ox type s	olar co	ooker	
			-	-	-	-	-			-	on of so				n
			-	-	-	-	-			-	tion of se		-	-	
			-	-	-		-	-		-	tion of s			-	
			-	-	-		-	-		-	tion of s	-		•	
			-		-		-	-		-	tion of w			-	
			-		-			-		-					
References	•				-		-	-		-	tion of s				ionaa
Kelerences	•							-	-		al proces		-		
						gan R.	W. So	olar Er	lergy I	rundam	entals a	nd Desig	n with	i com	puter
				ations			C 1		т		T 1	0. 11	X 7 1		
4			-					-		-	London	& New	YOrk		
Course								ners w			. d	1	•		1
Outcomes											ic thern	nodynai	mic co	oncep	ots and
		so	ar th	ermal	appli		1111 th	ne lab	orator	y.	cts of v	miona	notor	a 1a	
											easurin				and to
											lar wate			uon	
Mapping be	etwee						ence	in opt	1410	1 01 30	a wat	i neatel	5.		
Please refe							the st	vle of	man	ning.					
Mapping b								<u>, 10 01</u>	map	r8•					
CO			~, - 0	~ •••••			PO							PSC)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01		-		-		Ť							-		-
CO2															
CO3															

Course code	Energy		nviro	nme	ntal I	Engin	eerin	5				
Course title	REN 51	1										
Corse credit	3 (3+0)											
Objective of Course	global 2. To une use an 3. To im transp	enviro derstan d econ part ba ortation culcate	onmen nd the omic asic k n, bui syste	tal ch relat grow nowle lding matic	nange ionsh th and edge s etc.	and i ip be d facto about	nterlir tween ors aff curre	nkages of carbon fecting of nt ener	of renev cycle, environ gy scer	wable en energy ment. nario, en	nergy polic nergy	change and sources. cies, energy analysis in environment
Course Content	Theory											
	energy t and env pollution technolo utilizatio <u>UNIT II</u> Waste waste, r and ap Biofilte	echnol vironmo n and ogies an on of n manag reclama plicatio	ogies ent q its nd en atural emen ation on of odegra	, ener uality cont ginee reso t in of wa rene	rgy co 7, ren rol, ring s urces agro aste w ewabl e plas	onsum newab envir systen indus vater, r e ene tics for	ption le so onmer as for tries, use of ergy f	strateg urces o ntal in pollutio handlin waste for clea ching.	ies to n of ener opact o on cont ng, sto land fo an envi	neet der gy, air, of curr rol and rage ar r energy ronmer	mands wate rent conse d pro gene at. Ca	d improved s for energy er and soil agricultural ervation and occessing of eration, role ase studies,
References:	1. Tv	videll J	ohn V	W. an	d A.]	D. We	eir; Re	enewab	le Ener	gy Soui	ces	
	 Hore Elsev Rathore Meas Mathematical Meas Mathematical Meas Mathematical Meas 	opes G vir Pub. to C. S ore N. sures, S athur A avid Co	. Pup . Co., .; Env .S., 1 Shubh A. N., oley. 1	py; E New vironr Kurch i Pub Rathe Energ	York York nenta ania licatio ore N	y and I Poll A.K ons, C I. S. at I Clin	Envir ution ., Cli durgao nd V. nate C	conmen Control matic on, 200 K. Vija hange.	t, Manl l Engin Chang l ly; Envi	kind an eering es & ironmer	d Ene Their ntal A	plications ergy Needs, Remedial wareness , Ltd.U.K.
Course	At the e								1		1	
Outcomes Mapping between Please refer map	principle resource CO2: T social sc CO3: T ecosyste CO4: T CO5: T the envir COs with ping of P	es of es and t 'o unde ciences o unde em and o acqu o unde <u>ronmen</u> n POs a O and	the entropy of the en	hatura viron d and vant to d vari arious e kno d the SOs for t	d and ment l approvissu ous c com wledg vario	d soc ropria es of compo poner ge on bus eco	tely unatura natura nents at and ecologosyste	se the l resour of the functio gy, and m serv	to cu vocabu rces and enviror ons. ecolog	rrent is laries o d the en iment an ical dyr	f the viron nd int	terfaces and
Mapping between	n Cos, PC	Js and	P3 U	8	DO						1	DCO
CO 1	2 3	4	5	6	<u>РО</u> 7	8	9	10	11	12	1	PSO 2 3
1 CO1	<u> </u>	4	3	U	/	0	y	10	11	14	1	<u> </u>
CO1												

CO2								
CO3								
CO4								
CO5								

Course code	Agro Energy and Audit Management
Course title	REN 512
Corse credit	2 (2+0)
Objective of	1. To acquaint and equip about the sources of energy, conservation of energy
Course	and its management. Energy use scenario in agricultural production system,
	agro-based industry. Study of energy efficiency, energy planning,
	forecasting and energy economics.
	2. To study the energy efficiency, energy planning, forecasting and energy
	economics.
	3. To understand the concept of energy auditing, conservation and
	management.
	4. To study the quantification, conservation opportunity and retrofitting of
	energy efficient system integration is expected from the course.
Course Content	Theory
	<u>UNIT I</u>
	Energy resources on the farm: conventional and non-conventional forms of
	energy and their use. Heat equivalents and energy coefficients for different
	agricultural inputs and products. Pattern of energy consumption and their
	constraints in production of agriculture. Direct and indirect energy.
	UNIT II
	Energy audit of production agriculture, and rural living and scope of
	conservation.
	UNIT III
	Identification of energy efficient machinery systems, energy losses and their
	management. Energy analysis techniques and methods: energy balance, output
	and input ratio, resource utilization, conservation of energy sources
	<u>UNIT IV</u>
	Energy conservation planning and practices. Energy forecasting, Energy
	economics, Energy pricing and incentives for energy conservation, factors
	effecting energy economics. Energy modeling.
References:	1. Kennedy WJ Jr. & Wayne C Turner.1984. Energy Management. Prentice
	Hall.
	2. Pimental D. 1980. Handbook of Energy Utilization in Agriculture. CRC
	3. Fluck RC & Baird CD.1984. Agricultural Energetics. AVI Publ.
	4. Rai GD. 1998. Non-conventional Sources of Energy. Khanna Publ.
	5. Twindal JW & Anthony D Wier 1986. Renewable Energy Sources. E & F.N.
	Spon Ltd.
	6. Verma SR, Mittal JP & Surendra Singh 1994. Energy Management and
	Conservation in Agricultural Production and Food Processing. USG Publ. &
	Distr., Ludhiana
Course	At the end of the course, learners will be able
Outcomes	CO1: To understand the concept of agro energy auditing, conservation and
	management and to outline energy scenario, audit and management.
	CO2: To learn in-depth knowledge about the quantification, conservation
	opportunity and retrofitting of energy efficient system integration.
	CO3: To apply energy conservation policy, regulations in industrial practices.
	CO4: To evaluate energy economics and Identify opportunities for rational use
	of energy.

		C	05: 1	Го ar	nalyze	elect	trical	syste	ms fo	or energ	gy cons	ervatio	n and	th	ermal
		sy	stems	for e	energy	effic	iency								
Mapping be	etween	n COs	s with	POs	and P	SOs									
Please refe	r maj	oping	of P	O and	d PSC) for t	the st	yle of	' map	ping.					
Mapping b	etwee	en Co	s, PC)s and	d PSC)s									
CO							PO							PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	Design and Analysis of Renewable Energy Conversion Systems
Course title	REN 513
Corse credit	3 (3+0)
Objective of	1. To keep the knowledge of students upgraded with the current thoughts and
Course	newer technology options along with their advances in the field of the
	utilization of different renewable energy technologies for energy production.
	2. To design and analyze renewable energy conversion systems,
	thermodynamics involved in it and performance of renewable energy
	systems.
	3 . To design of various energy conversion systems, standards and test codes of
	renewable energy systems and their performance analysis.
Course Content	Theory
	<u>UNIT I</u>
	Energy cycle of the earth; water flow and storage; ocean currents and tides.
	Energy heat flow and energy storage; photosynthesis and biomass; renewable
	energy sources.
	Thermodynamics of energy conversion; conversion of solar energy, wind
	energy, water flows, heat, biomass, etc.; other conversion processes.
	UNIT II
	Development and use of biogas, alcohols and plant oils, plant oil esters in I.C.
	engines. Study of various parameters for measuring the performance of the
	output. Design of bio-fuel production units: design of gasifiers, gas flow rates,
	biogas plants. Establishment of esterification plant, fuel blending.
References:	1. Boyle Godfrey. 1996. Renewable Energy: Power for Sustainable Future.
	Oxford Univ. Press.
	2. Culp AW. 1991. Principles of Energy Conservation. Tata McGraw Hill.
	Duffle JA & Beckman WA. 1991. Solar Engineering of Thermal Processes.
	John Wiley.
	3. Garg HP & Prakash J.1997. Solar Energy - Fundamental and Application.
	4. Tata McGraw Hill.
	5. Grewal NS, Ahluwalia S, Singh S & Singh G. 1997. Hand Book of Biogas
	Technology. Solar Energy Fundamentals and Applications. TMH New Delhi.
	6. Mittal KM. 1985. Biomass Systems: Principles & Applications. New Age
	International.
	7. Odum HT & Odum EC. 1976. Energy Basis for Man and Nature. Tata
	McGraw Hill.
	8. Rao SS & Parulekar BB.1999. Non-conventional, Renewable and
	Conventional . Khanna Publ.
	9. Sukhatme SP.1997. Solar Energy - Principles of Thermal Collection and
	Storage. 2nd Ed. Tata McGraw Hill.
Course	At the end of the course, learners will be able
Outcomes	CO1: To study the design technology and system on renewable and carbon-
	neutral energy.
	CO2: To analyse energy economics and business model.
	CO3: To formulate energy policy and planning.
	CO4: To develop interdisciplinary research in energy systems engineering.
	CO5: To understand professional and ethical responsibility in renewable
	energy.

Mapping	g betwe	en C	os, PO)s an	d PSC	Ds									
CO							PO							PSC)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	Engineering Instrumentation and Control
Course title	REN 514
Corse credit	3 (2+1)
Objective of	The course focuses on imparting the principles of measurement which includes
Course	the working mechanism of various sensors and devices, that are in use to
	measure the important physical variables of various mechatronic systems.
Course Content	Theory
	<u>UNIT I</u>
	Introduction to functional elements of an instrument, active and passive
	transducers, analog and digital modes, null and deflection methods,
	performance characteristics of instruments including static and dynamic
	characteristics.
	UNIT II
	Measuring devices for force, torque and shaft power, strain gauge type devices
	and their design and application in two and three dimensional force
	measurement, Design and analysis of strain gauge type tillage tool
	dynamometers, Devices for measurement of temperature, relative humidity,
	solar radiation, pressure, sound, vibration, flow etc. Measuring instruments for
	calorific values of solid, liquid and gaseous fuels, Measurement of gas
	composition using GLC. Recording devices and their type,
	UNIT III
	Data storage systems and their application
	Practical
	Calibration of instruments, measurement of strain, making of thermocouples
	and their testing, now measurement in a pipe, humidity measurement, data
	analysis and interpretation, signal conditioning circuits, testing of pressure
	transducers
References:	1. Doeblin, E. O. (1966) Measurement Systems -Application and Design,
	McGraw-Hill, Book Company,
	2. Ambrosius, E. E. (1966), Mechanical measurement and Instrumentation,
	The Ronald Press Company, New York.
	3. Oliver, F. J. (1971), Practical Instrumentation Transducers, Hayden Book
	company Inc., New York,
	4. Perry, C. C. and Lissner, H.R. (1962), The Strain Gauge Primer, McGraw-
	Hill Book Company, ,
	5. Nachtigal, C.L. (1990), Instrumentation and Control: fundamentals and
	Applications, John Wiley and Sons.
Course	At the end of the course, learners will be able
Outcomes	CO1: To select appropriate device for the measurement of parameters like
	temperature, pressure, speed, stress, humidity, flow velocity etc., and justify its
	use through characteristics and performance.
	CO2:To identify, formulate and solve problems
	in various fields of Instrumentation & Control engineering such as Process,
	Environmental, Agriculture Instrumentation and Building Automation etc.
	CO3: To demonstrate an ability to design and prepare experimental
	set ups and conduct experiments, analyze and interpret
	data.

Mapping b	etwee	en CO	s with	n POs	and F	SOs										
Please ref	er ma	apping of PO and PSO for the style of mapping. een Cos, POs and PSOs														
Mapping	betwe	en Co	os, PO)s an	d PSC)s										
CO		PO PSO PSO														
	1	PO PSO 2 3 4 5 6 7 8 9 10 11 12 1 2 3														
CO1																
CO2																
CO3																

Course code	Statistical I	Aetho	ds												
Course title	REN 515														
Corse credit	3 (3+0)														
Objective of	1. To impa	t know	ledge	on S	tatisti	cal co	oncepts	like D	ata Coll	ectior	n, Mea	asures			
Course	of Cent		0								-				
	Statistica	l Meth	nods,	Infere	ence,	Samp	oling m	ethods	, Experi	iment	al De	signs,			
	Economi														
	2. To impa														
	Economi														
	continger		Busine	SS CO	mmui	ncatio	on, Act	uarial	Statistic	s, M	ortalit	y and			
	Insurance			haa	daw	1: + +		n fon o	maatiti			tions			
Course Content	3. To equip Theory	studen	its wi	in goo	a qua	inty to) appea		Inpetiti	ve exa	amma	uons.			
Course Content	•														
	<u>UNIT I</u>	1	.1	1		<i>.</i>	· 1	1	1			L C			
	Classical a		-		-		-			-	-				
	statistical	nteren	ce a	nd th	ne ra	tiona	e und	erlying	g the c	choice	e of	these			
	procedures.														
	<u>UNIT II</u>														
	Problems o	ems of estimation, hypothesis testing, large sample theory, probability, ssion.													
	regression.	ession. apur, K. (2000). Elements of Practical Statistics. Oxford & IBH Publishing													
References:	1. Kapur, K	ssion.													
	Co. Pvt.	ssion. pur, K. (2000). Elements of Practical Statistics. Oxford & IBH Publishing b. Pvt. Ltd.													
	2. Simpson	<u>II</u> ems of estimation, hypothesis testing, large sample theory, probability, sion. pur, K. (2000). Elements of Practical Statistics. Oxford & IBH Publishing . Pvt. Ltd. npson, O.J. (2000). Basic Statistics. Oxford & IBH Publishing Co. Pvt.													
	Ltd.														
	3. Milton,	J. S. a	and A	Arnolo	1, J.	C. 19	995). Ii	ntroduc	ction to	Prob	ability	y and			
	Statistics	: Prin	ciples	and	App	licatio	ons for	: Engi	neering	and	Comp	outing			
	Sciences		-		11			U	U		1	U			
Course	At the end of				ners w	vill be	able								
Outcomes	CO1: Unde							e on da	ta collec	ction	and va	arious			
	statistical el						U								
	CO2: Made	a brie	dge b	etwee	n the	elem	entary	statisti	cal tools	s and	proba	ability			
	theory.														
	CO3: Find								enomena	with	the h	elp of			
Manalas	curve fitting			tion-r	egres	sion a	nalysis	•							
Mapping between Please refer mapp				ho of	vlo of	mon	ning								
Mapping between				ne st	yie of	map	ping.								
CO	505, 1 O5 al			PO							PSO				
	2 3 4	5	6	7	8	9	10	11	12	1	2	3			
CO1								_				_			
CO2															
CO3															

Course coo	le	Ма	store	' Sen	ninar										
Course titl			N 59		111141										
Corse cred)+1)	1											
Objective of		· ·		nare	stude	nte to	com	nete f	or a s		ful care	er in R	enew	ahle I	Inergy
Course	2. To enable the students to aptly apply their acquired knowledge in basic sciences and mathematics in solving Renewable Energy Engineering problems. 3. To produce skillful graduates to analyze, design and develop a system/component/ process for the required needs under the realistic constraints. 4. To train the students to approach ethically any multidisciplinary engineering challenges with economic, environmental and social contexts. 5. To create an awareness among the students about the need for life long learning to succeed in their professional career. Course Content - References: - Course Outcomes														basic beering lop a ealistic
		5.T	o cre	eate a	n aw	varene	ess ar	nong	the s	student	s about			or life	e long
Course Co	system/component/ process for the required needs under the realistic constraints. 4. To train the students to approach ethically any multidisciplinary engineering challenges with economic, environmental and social contexts. 5. To create an awareness among the students about the need for life long learning to succeed in their professional career. rse Content - rse At the end of the course, learners will be able CO1: To get the knowledge and to demonstrate the ability to identify, formulate														
References	ontent - es: - At the end of the course, learners will be able														
Course	At the end of the course, learners will be able CO1: To get the knowledge and to demonstrate the ability to identify, formular														
Mapping be Please refe	r map	and CO and CO tasl CO equ CO and and and COs	l solv 2: T l inter 3: T 5: T l ipme 5: T l in b l abili s with of P	e eng o den pret o o vis o den o den o der oth ve ty for a POs O and	ineeri nonstr lata. ualize nonstr analy: monst erbal a <u>life-l</u> and F	ng pr rate th ate th ze pro rate t and w long 1 2SOs 2 for	oblen he ab abilit e skil bblem he ku ritten earnin	ns. ility t y and ls to u s. nowle form ng.	worl worl use mo dge co and t	ign an k on la odern e of profe o devel	d condu uborator engineer essional	ict expe	erimer nulti- ls, sof	nts, a discij ftware ponsil	nalyze plinary e's and bilities
Mapping b	etwee	n Co	s, PC)s and	a PSC)s									
CO						-	PO							PSC)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4						-									
CO5															

Course cod	e	Spe	cial l	Probl	em										
Course title)	RE	N 592	2											
Corse credi	it	1 (0)+1)												
Objective o	f	1. 7	Гор	provid	le a	con	npreh	ensive	e un	derstan	ding	of the	con	cepts	and
Course				-	gies f , prob	-			entifi	cation,	analys	sis of	probl	em,	report
Course Cor	ntent	-													
References	:	-													
Course															
Outcomes															
Mapping be	tween	COs	with	POs	and P	SOs									
Please refer	r map	ping	of PO) and	I PSO) for t	the st	yle of	map	ping.					
Mapping b	etwee	n Co	s, PO	s and	I PSO	s									
СО							PO							PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	e	Ind	lustry	/Inst	itute	Trair	ning								
Course title	ļ		N 59												
Corse credi	t	NC	1												
Objective of	f	То	expos	se the	stude	nts to	the in	ndusti	y.						
Course															
Course Con	tent	Ins	titutio	nal Ir	n-plan	t trai	ning i	n the	relev	ant Rer	newable	e energy	v devi	ces/pr	ocess
		dur	ing n	nanuf	acturi	ng, a	sseml	oly, t	esting	g and i	nstalla	tion of	equij	pment	s. To
		stu	dy the	e actu	al w	orkin	g of t	he eo	Juipm	ent and	d vario	ous unit	oper	ations	. The
		eva	luatio	on wil	l be t	ased	on th	e wri	tten re	eport of	f the st	udent ar	nd the	e com	nents
		of	the fa	ctory	man	agers.	The	durat	ion o	of traini	ng sha	ll be th	ree	weeks	. The
						-					-	other that			
			ich he		-				C						
References:		-													
Course		CC)1: In	ndusti	ial T	raini	ng ca	n mal	ke the	e stude	nts aw	are of t	he In	dustr	y
Outcomes		No	rms a	and t	o wo	rk in	a real	wor	k env	vironme	ent wh	ich can	help	them	in
							organ								
					-		-				test tec	hnolog	ies u	sed in	the
			ustry									C			
Mapping ber	tweer	n COs	s with	POs	and P	SOs									
Please refer	[.] map	oping	of PO) and	PSO) for t	the sty	yle of	map	ping.					
Mapping be	etwee	en Co	s, PO	s and	PSO	s									
CO			1				PO					•		PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															

Course code	e	Ma	ster's	s Res	earch										
Course title			N 519		cui ch	-									
Corse credi			(0+20)												
Objective of	-			,	le a	cor	npreh	ensiv	e un	dersta	nding	of the	cor	ncepts	s and
Course											projec				
					and p					,	F	- FF		·,]	j
									d the	proie	ct cycle	and th	neir v	wide	socio-
								al imp		r J	j				
								-		evalua	te a pro	piect in	view	v of	global
											ergy and				
Course Con	tent														
References:															
Course		At 1	the en	d of	the co	urse.	learn	ers w	ill be a	able					
Outcomes											Enginee	ring and	d Env	viron	mental
					roject					8,	8	8			
		CO	2: La	borat	ory a	nd fie	eld ba	sed st	udy.						
		CO	CO3: Small and comprehensive projects for renewable energy engineering												eering
			development and sustainability.											U	
		CO	4: T	o de	velop	ar	projec	t wit	h sui	table	technolo	gy/syste	ems	and	global
										saving					C
		CO	5:	То	carry	out	tech	no-eco	onomi	c eva	luation	of Rei	newal	ble I	Energy
		Eng									onventio				
		env	ironn	ienta	l cons	idera	tions.					-			
Mapping bet															
Please refer							the st	yle of	f map	ping.					
Mapping be	etwee	n Co	s, PO	s and	l PSC)s							1		
CO							PO			-	-			PSC	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Post Graduate Doctor of Philosophy (Ph.D.) Program in Renewable Energy Engineering (OLD)

Course code	A	dvano	ced E	nergy	v Svst	ems l	For L	ndust	rial Ap	plicatio	ons					
Course title		EN 6		8/	~				F	r						
Corse credit		(3+0)														
Objective of		· /		adva	nced l	oioche	emica	l and	thermo	chemica	al conve	ersion	syste	m.		
Course										e in the						
		syster														
		•		esign	criteri	a for	advar	ice en	ergy co	onversio	on syste	m.				
				-						opportu			rofitti	ng of		
			•	-						y utiliza	•			0		
Course Conten		heory			5		0		ں ب	·						
		-		comb	ined	cvcle	(IGC	CC). I	Fuels f	or pow	er gene	eratio	n. Ad	vance		
						•				i coat te	-					
			-			-	-	-		ntegrate		-				
										nts, Bio	-					
						-	-		-	y. Biog				nants,		
References:			<u> </u>						-	Taylor		• •		<u></u>		
Kelefences.										•				011.		
		-														
		Canada Fuel Cell Technology Handbook, Editor(s): Gregor Hoogers, Trier University of Applied Sciences, Birkenfeld, Germany Caye Drapcho, John Nghiem, Terry Walker Biofuels Engineering Process														
	,	Techr	nology	, Mc	Graw	Hills	•									
	5.	Bio	fuel 7	Геchn	ology	/ Han	dbool	k, Fre	e Dow	nload E	Book fro	om h	ttp://a	rtikel-		
	5	softw	are.co	m/blo	og/200	08/06	/16/bi	ofuel	-techno	logy-ha	ndbook	2				
Course	At	t the e	end of	the c	ourse	, learr	ners w	ill be	able							
Outcomes							-			ergy co						
					-	h kno	owled	ge ab	out bio	ochemio	cal and	theri	moche	emical		
			sion sy							c .1			11			
										for the	rmal as	s wel	I as j	power		
			ion sy							fy oppo	rtunitio	s for	ration			
		energ		iuate	energ	y eco	monn	cs and	i identi	ry oppe	ituiiitie	5 101	ration	ai use		
Mapping betwe	en CO	s with	POs	and P	SOs											
Please refer ma						he st	yle of	map	ping.							
Mapping betwe																
CO						PO							PSO	1		
1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1																
CO2																
<u>CO3</u>																
CO4																

Course code	Computer Aided Analysis And Design Of Renewable Energy Systems
Course title	REN 602
Corse credit	3 (2+1)
Objective of	1. To train students as competent professionals in renewable energy
Course	engineering.
	2. To impart skill development for a rapidly changing technological
	environment using different software's in renewable energy engineering.
	3. To collaborate with the industry in research and allied activities for a better
	industry-institute interaction.
	4. To serve the society by imparting quality education and providing ethical,
	professional leadership quality to students to find solutions for societal
	problems.
Course Content	Theory
course content	Introduction to computer-aided design, Autolips, Geometric modeling and
	interactive graphics, Computer-aided analysis and synthesis of common
	Renwable Energy systems. Application of numerical methods and optimal
	techniques to machine design, problems, Computer-aided selection of standard
	mechanical components, Introduction to FEM. Computer aided design of
	Renewable Energy Systems viz. solar air heating systems, solar dryers,
	Greenhouses, biomass gasifier and biogas plant. 3D rendering and animation.
	MATLAB programming language for the machine components.
	Practicals
	Preparation of engineering drawings of equipment/machine, energy balance
	eequations and programming of solar air heating, solar drying, greenhouse.
	Design calculation and analysis of biomass gasifier and biogas systems.
	Estimating and costing of RE systems.
D.f	
References:	1. Ramamurty, T. (2001). Computer Aided Mechanical Design and Analysis,
	Tata McGraw-Hill, New Delhi.
	2. Mukhopadhyay, M. (2000). Matrix, Finite Element, Computer and
	Structural Analysis, Oxford & IBH Publishing Co. Pvt. Ltd.
	3. Krishnamoorty, G. (2001). Finite Element Analysis: Theory and
	Programming Tata McGraw-Hill, New Delhi.
	4. Kundra, C. V. (2000). Numerical Control and Computer Aided
	Manufacturing Tata McGraw-Hill, New Delhi.
	5. Zeid, K. (2000). CAD/CAM Theory and Practice, Tata McGraw-Hill, New
	Delhi.
Course	At the end of the course, learners will be able
Outcomes	CO1: To implement structural engineering projects as an individual or member
	in design and execution team.
	CO2: To carry out novel research in computer aided structural and
	multidisciplinary domains.
	CO3: To effectively examine materials and technical reports and ensure
	sustainable construction practices as per updated codes.
** •	COs with POs and PSOs
	bing of PO and PSO for the style of mapping.
	a Cos, POs and PSOs
СО	PO PSO
1	2 3 4 5 6 7 8 9 10 11 12 1 2 3

CO1									
CO2	2								
CO3	•								

Course code	;	E	nergy	Lab											
Course title		R	EN 6	03											
Corse credit	t	3	(0+3)												
Objective of	?	1.	To p	rovid	e expo	osure	and h	nands-	on-sk	ills pra	ctice to	the stu	dents	s on va	arious
Course			_		_					nd tech					
		2.	-				•					nal aspe	ects of	f renev	wable
			-	gy dev		-					r	r -			
		3.				-			ment	and ge	t acqua	inted w	vith th	ne liter	rature
												the f			
				nolog							0				- 65
		4.		-	•	d dev	elop	prese	ntatio	n skills	and i	mport a	a kno	wledg	eable
			socie				I	1				1		C	,
Course Con	tent	Pı	ractic												
		1.	St	udy of	f Sola	r cell	chara	cteris	tic.						
		2.		udy of											
		3.		•			-		adiati	on law					
				•				•							
		4.		•						of its ef		-			
		5.		•	-				-		-	er genei	ation	•	
		6.		•					-	on syste					
		7.	St	udy of	f Gas	Chroi	natog	graph	and d	etermin	ation o	f compo	ositio	n of bi	iogas,
			pr	oduce	r gas	and fl	ue ga	ses.							
		8.	De	evelop	oment	of so	lid an	d liqu	id fue	l from	biomas	s.			
		9.		_				-				iogas ai	nd die	esel.	
		10		•		-			-	opha oi	-	0			
		11		-						-		t of ca	lorifi	c valı	ue of
		11		fferen			Juion	meter	unu	mease	nemen		101111	e vuit	ue 01
		10					and	I Iltim	ata am	alvaia	fhiom	0.00			
		12								alysis o					
		13		-	-				-	d Cook					
		14		•			-	-		n wind.					
		15	5. Stu	dy of	Integ	rated	Energ	gy Sys	stem						
References:		1.	Ra	thore	N.S.,	Kurc	hania	ı A.K	, Pan	war N.	L., Rer	newable	Ener	gy: T	heory
			& Pr	actice	, Him	anshu	ı Pub	licatio	ons, 20	006					
		2.		Khar	ndelwa	al, K.	C. &	Mahd	i, S.S.	Biogas	s Techr	nology,	1990.		
		3.		Rai.	G.D.	Non	-Con	ventio	nal E	lnergy	Source	s, Kh	Publi	shers.	New
			Delh							05		,		,	
Course		At		end of	the c	ourse	lear	iers u	ill he	able					
Outcomes											with	variatio	n in 1	tempe	rature
0 400000000										mbinat					
								-				mic pri	ncipl	es and	l their
				-	-		-					energy	-		
		-	-									energy		nomics	s and
						-				m solvi		•••			
Mapping bet	weer	n COs	s with	POs	and P	SOs									
Please refer							he st	yle of	map	ping.					
Mapping be	twee	n Co	s, PC)s and	I PSO	s									
СО			-			-	PO							PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															

CO2								
CO3								

Course code	Numer	ical A	nalvs	sis											
Course title	REN 6		<u></u> j.												
Corse credit	3 (2+1)														
Objective of	1.To de		of th	eorv a	and p	ractic	e in t	he use o	of adva	nced nu	merio	cal me	thods		
Course				•						in rea					
		eering						1					05		
	2.To fo	ormula	ate th	ne rer	newał	ole er	nergy	device	perfor	mance	in th	ne for	m of		
	nume	rical e	quati	ons											
Course Content	Theory	7													
	UNIT I	<u>.</u>													
	Numer	rical	meth	ods	for	syster	ns c	of line	ar equ	ations,	eig	en v	alues,		
	interpo					•					U		-		
	UNIT I				,		1								
	Numeri	_	lutior	ı of di	iffere	ntial e	auati	ons and	non-li	near eoi	lation	is in se	everal		
	variable						Juni	uitu uitu		iioui oqu					
	Practic														
		ctice on matrix manipulation, Exercises on solution of the systems of linear													
		ctice on matrix manipulation, Exercises on solution of the systems of linear non-linear equations, solution of differential equations.													
References:															
References:			•			umer	ical N	lathem	atical A	Analysis	5. OXI	ora &	IBH		
		ishing									_	- ~			
	2. Chap		. (200)0). N	lumer	rical I	Metho	ods for	Engine	ers. Tat	a N	1cGra	w-Hill,		
	Delh														
	3. Atki					-			-				•		
	4. Eppe	erson.	J.F. ((2002)). An	Intro	ductio	on to Nu	umerica	l Metho	ods ar	nd An	alysis.		
	John	Wile	y.												
Course	At the e														
Outcomes	CO1:										enewa	able e	nergy		
	technol	0.								0		_			
			nderst	and	the a	pplica	ation	of Fou	rier tra	ansform	n in (engine	eering		
	applica		1				- f 1		0 <u> </u>	: 1 fl					
	CO3: 7		-							elliptica	-		bolio		
	equatio		evelo	ргш	inte u	intere	nce	methou	\$ 101 0	emptica	li alle	i para	abone		
Mapping between			and P	SOs											
Please refer map					the st	yle of	map	ping.							
Mapping between						•	Ľ								
CO	· ·				PO							PSO			
1	2 3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1															
CO2															
CO3															
CO4															

Course code	Agricultural Waste And By-Products Utilization
Course title	REN 605
Corse credit	3 (2+1)
Objective of Course	 To acquaint and equip proper utilization of agricultural waste and by-products and development of value added products from wastes To provide in depth knowledge, understanding and application oriented skills on sources, quality, classification and characteristics of agricultural waste and by-products along with municipal and compost treatment and remote sensing technologies for agricultural waste management. To estimate, characterize and design of agricultural waste management conversion system. To understand the energetic and kinetics of anaerobic treatment, sanitation land fill, pre-digestion of waste etc.
Course Content	Theory
	 <u>UNIT I</u> Generation of by-products, agricultural and agro industrial byproducts/ wastes, properties, on site handling, storage and processing. <u>UNIT II</u> Collection of wastes, utilization pattern as fuel, agricultural waste fired furnaces: Mechanism, construction and efficiency, suitability of wastes as fuel, fuel briquettes, briquetting process, equipment, factors affecting briquetting. <u>UNIT III</u> Utilization of wastes for paper production, production of particle board, utilization, by-products from rice mill, rice husk, rice bran, utilisation. <u>UNIT IV</u> Thermo-chemical conversions, densification, combustion and gasification, extraction, biological conversions, anaerobic digestion, biochemical digestion process, digestion systems, energy from anaerobic digestion, cellulose degradation, fermentation process. Practical Exercises on stepped grate and fixed grate rice husk furnaces, waste fired furnace, briquette machine, production of alcohol from waste materials,
	production and testing of paperboards and particleboards from agricultural
References:	 wastes. ASAE Standards. 1984. Manure Production and Characteristics. Bor S Luh (Ed.). 1980. Rice: Production and Utilization. AVI Publ. Chahal DS.1991. Food, Feed and Fuel from Biomass. Oxford & IBH. Chakraverty A. 1989. Biotechnology and other Alternative Technologies for Utilisation of Biomass/Agricultural Wastes. Oxford & IBH. David C Wilson. 1981. Waste Management - Planning, Evaluation, Technologies. Oxford. Donald L Klass & Emert H George 1981. Fuels from Biomass and Wastes. Ann. Arbor. Science Publ.
	 Srivastava PK, Maheswari RC & Ohja TP. 1995. Biomass Briquetting and Utilization. Jain Bros. USDA 1992. Agricultural Waste Management Field Handbook. USDA.

		9	. W	lifred	AC	ote.19	83. <i>B</i>	iomas	ss Uti	lization	. Plenu	m Press			
Course		A	t the	end o	f the	course	e, leai	mers	will b	e able					
Outcomes		C	:01:	To aj	oply t	he kr	nowle	dge a	bout	the ope	eration	of agri	cultur	al wa	ste to
		e	nergy	plant	s.										
		C	CO2:	To a	nalyz	e the	vario	ous a	spects	s of ag	ricultur	al was	te uti	lizatio	on for
		e	nergy	gene	ration	l .									
		C	CO3:	To ap	ply tl	he kn	owled	lge in	plan	ning &	operati	ion of a	gricu	ltural	waste
		to	o ener	gy pl	ants.			-	_	-	_		-		
		C	CO4:	To i	ntrod	uce r	ole d	of bio	otechr	ology	in agr	icultura	l wa	ste a	nd by
		p	roduc	lucts management. with POs and PSOs											
Mapping b	etwe	en CO	COs with POs and PSOs												
Please ref	er ma	appin	ng of	PO a	nd P	SO f	or th	e sty	le of	mappi	ing.				
Mapping	betw	een C	Cos, I	POs a	nd P	SOs		Ŭ		• •	0				
CO							PO							PSO)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															

Course code	D	octora	al Sem	inar.	-T																		
Course title		EE 69			-																		
Corse credit		(1+0)	-																				
Objective of			enare (studer	nts to	comr	ete f	oras	liccess	ful care	er in R	enew	able I	Energy									
Course	2. 3. 4.	Engine To en scienc proble To p system constr To tra challer To cre	eering able to es ar oroduc n/comp aints. in the nges we eate a	profe the st nd m e sk ponen stude vith ec in aw	ession tudent nathen cillful nt/ pr ents to conon varene	throuts to natics grad cocess o app nic, en ss an	igh gl aptly in duates for roach nviror nong	obal e appl solvi s to the ethic ment the s	educati y their ng Re analy requir cally ar cally ar	on stand r acquin enewabl yze, de red nee ny multi social c s about		wled rgy and ler t nary	ge in Engir deve he ro engir	basic heering lop a ealistic heering									
Course Cont	ent -		0																				
References:	-	t the end of the course learners will be able																					
Course	A																						
Outcomes Mapping betw Please refer	an C an C ta C e c an an ween C	- At the end of the course, learners will be able CO1: To get the knowledge and to demonstrate the ability to identify, formulate and solve engineering problems. CO2: To demonstrate the ability to design and conduct experiments, analyze and interpret data. CO3: To visualize the ability and work on laboratory and multi-disciplinary tasks. CO4: To demonstrate the skills to use modern engineering tools, software's and equipment to analyze problems. CO5: To demonstrate the knowledge of professional, ethical responsibilities and in both verbal and written form and to develop confidence for self education and ability for life-long learning. n COs with POs and PSOs																					
Mapping bet						ine st	yie of	тар	ping.														
CO		.05,10	75 and	1100	10	РО							PSC)									
	1 2	3	4	5	6	7	8	9	10	11	12	1	2	3									
CO1			<u> </u>			<u> </u>		É					-										
CO2																							
CO3																							
CO4																							
CO5				<u> </u>	4		4		4														

Course code	Doc	rtora	Sem	inar-	П										
Course title		E 692		11141											
Corse credit		+0)	-												
Objective of Course	1. 7 H 2. 7 S C 3. 7 S C 4. 7 C 5. 7	Fo pre Engin educa Fo en ecienc other fo p system constr Fo tra challe Fo cr	eering tion s able es an discip produce n/com aints. in the nges eate a	g pro tanda: the s d ma line r ce sl pone e stud with e an aw	ofession rds. tuden them them elated killful nt/ p ents t econo varence	on w ts to atics l prob gra roces o app mic, e ess au	aptly in so plems. duate s for proach enviro mong	nulti- appl lving s to the ethic nmen the s	discipl y their Renev analy requir cally ar tal and	ful care inary a r acquin vable E yze, de red nee ny multi l social e s about er.	ed kno nergy E esign a eds und disciplin contexts	throu wledg Engine and d ler th nary e s.	igh ge in ge in gering develo de rea engine	global basic with op a alistic eering	
Course Content	-														
References:	-														
Course	At t	t the end of the course, learners will be able													
Outcomes Mapping between	and CO and CO task CO equ CO and and	At the end of the course, learners will be able CO1: To get the knowledge and to demonstrate the ability to identify, formulate and solve engineering problems. CO2: To demonstrate the ability to design and conduct experiments, analyze and interpret data. CO3: To visualize the ability and work on laboratory and multi-disciplinary tasks. CO4: To demonstrate the skills to use modern engineering tools, software's and equipment to analyze problems. CO5: To demonstrate the knowledge of professional, ethical responsibilities and in both verbal and written form and to develop confidence for self education and ability for life-long learning.													
Please refer map						he et	vle of	man	nina						
Mapping betwee						ne st	y ic of	тар	ping.						
CO		., I U	5 anu			PO							PSO		
	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	_	-	-	-	-	-		-						-	
CO2															
CO3															
CO4															
CO5												1			

Course cod	le	Spe	ecial I	Prob	lem										
Course title	e	RE	N 69	3											
Corse cred	it	1 (()+1)												
Objective of	of	То	provi	de a	comp	reher	nsive	under	stand	ing of	the con	cepts a	nd me	ethodo	logies
Course		for	prob	lem	identi	ficati	on, a	nalysi	is of	proble	m, rep	ort prep	oaratio	on, pr	oblem
		eva	luatio	on.											
Course Co	ntent	-													
References	:	-													
Course															
Outcomes															
Mapping be	etween	COs	s with	POs	and F	PSOs									
Please refe	r map	ping	of P) and	d PSC) for	the st	yle of	f map	ping.					
Mapping b	etwee	n Co	s, PC	s an	d PSC)s									
CO							PO							PSO)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course cod	e	Cas	se Stu	ıdy												
Course title	•	RE	N 69	4												
Corse credi	t	1 (()+1)													
Objective o	f	То	desc	ribe a	an inc	lividu	ial sit	uatio	ı (cas	se) in	renewa	ble ene	rgy č	liscipl	ine in	
Course		deta	ail; io	dentif	y the	key	issue	es of	the c	ase; a	nalyse	the cas	e usi	ng re	levant	
		the	oretic	al co	ncept	s fror	n you	r uni	or d	isciplir	ne; and	recomm	nend	a cou	irse of	
		acti	on fo	r that	parti	cular	case (partic	ularly	for pr	oblem-	solving	case	studie	s)	
Course Cor	ntent	-														
References	:	-														
Course		Cas	Case studies are effective ways to get students to practically apply their skills and their understanding of learned fasts to a real world situation. They are													
Outcomes		and	and their understanding of learned facts to a real-world situation. They are													
		par	ticula	rly us	seful v	where	situa	tions	are co	mplex	and sol	lutions a	re un	certai	n.	
Mapping be	tween	COs	with	POs	and P	SOs										
Please refer	. map	ping	of P	O and	l PSC) for 1	the st	yle of	map	ping.						
Mapping b	etwee	n Co	s, PC)s and	I PSC)s										
СО							PO							PSC)	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1																
CO2																
CO3																
CO4																
CO5																

Course cod	le	Do	ctora	l Res	earch											
Course title		-	E 69													
Corse cred	it	45	(0+45	5)												
Objective of	of			,	le a	con	npreh	ensive	e un	derstan	ding o	of the	con	cepts	and	
Course												t prep				
					and pi									•	U	
		2. 7	Го т	ake t	he st	udent	unde	erstan	d the	projec	et cycle	and th	neir v	vide s	socio-	
					nd en						-					
		3. 7	Го т	ake t	he st	udent	learı	ı hov	v to	evaluat	e a pro	oject in	view	of g	global	
		0	conce	rn ab	out su	staina	able d	evelo	pmen	t of ene	ergy and	enviro	nmen	t proje	ects	
Course Co	ntent	-														
References	:	-														
Course			t the end of the course, learners will be able 01: To identify various practical issues related Renewable Energy													
Outcomes			01: To identify various practical issues related Renewable Energy													
		Eng	ngineering and Environmental features of a project.													
		CO	CO2: Laboratory/machine/ gadget development and field based study.													
		CO	CO3: Small and comprehensive projects for renewable energy engineering													
		dev	elopr	nent a	and su	istaina	ability	<i>'</i> .								
		CO	4: T	'o de	velop	a p	roject	witl	n suit	table t	echnolo	gy/syste	ems	and g	global	
		env	vironn	nental	l impa	icts as	s well	as en	ergy s	saving.						
		CO										of Rei				
		Eng	gineer	ing p	projec	ts co	mpare	ed wi	th ot	her co	nventio	nal syst	tems	as w	ell as	
					cons		ions.									
Mapping be																
Please refe	-	<u> </u>					the st	yle of	map	ping.						
Mapping b	etwee	n Co	s, PO	s and	I PSO	s							1			
CO			-		-		PO		-		1			PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
<u>CO1</u>																
CO2																
<u>CO3</u>																
CO4																
CO5																

Course code	Advanced Photovoltaic Power Generation
Course title	REE 608
Corse credit	2 (1+1)
Objective of	6. To develop a comprehensive technological understanding in solar PV
Course	system components.
	7. To provide in depth understanding of design parameters to help design and
	simulate the performance of a solar PV power plant.
	8. To pertain knowledge about design, planning, project implementation and
	operation of solar PV power generation.
	9. Design and simulate a PV power plant using software tool, Plan, project
	implementation, operation and maintenance.
	10. Carry out techno-economic environmental performance evaluation of a solar PV power plant.
Course Content	Theory:
Course Content	Unit I
	Semiconductors: Transport properties, junctions, dark and illumination
	characteristics. Single junction and multi junction films. Solar PV
	concentrator cells and systems. Thin film solar cells: Nano, micro, and
	polycrystalline solar cells.
	Unit -II
	Systems for remote applications and large solar PV power plants: System
	integrations, roof top system, sizing methodology, power control, storage,
	tracking and control. PCID simulation of industrial solar cell structure,
	software's in solar cell simulation.
	Unit III
	Space charge control, low pressure diode, MMPT, cesium converter, system
	considerations. Photo electro chemical cells and materials. Photo galvanic
	cells: Recent development. Unit IV
	Conjunctive use of photo conversion systems: Photo-agriculture system, components, integration and economics. Software's for PV system integration
	and designing. PV system for ground mounted and rooftop plants with
	shadow analysis.
	Practicals:
	PV systems for typical applications, water pumping, solar PV tracking and
	mechanical clock tracking. Testing of power control system for output
	regulation, charging and discharging characteristics of storageby PV panels.
References:	1. Duffle JA and Beckman WA. 1991. Solar Engineering of Thermal
	Processes. John Wiley, NewJersey.
	2. Fonash SJ. 1982. Solar Cell Device Physics. Academic Press,
	Cambridge, England. 3. Garg HP. 1990. Advances in Solar Energy Technology.
	Springer Publishing Company, Dordrecht, Netherland.
	4. Green MA. 1981. Solar Cells Operating Principles, Technology, and
	System Applications. Prentice Hall, New Jersey.
	5. Kreith F and Kreider JF. 1978. <i>Principles of Solar Engineering</i> . McGraw
	Hill, New York.
	6. Luque A and Hegedus S. 2011. Handbook of Photovoltaic Science and
	Engineering Education. JohnWiley and Sons, New Jersey.
	7. Solanki CS. 2011. Solar Photovoltaic: Fundamentals, Technologies and

			Ann	ligati	ONG T	шт	oorni	na Dui	voto I	imited	l, Delhi						
		0						•							- Isha		
		8)/. P/	iysics o	of semi	conduci	or D	evice	. John		
				•	Sons,			•		_	~		~				
		9	. V	ezirog	glu T	N. 19	077. /	Altern	ative	Energ	y Soure	ces. Mc	Graw	/ Hill	, New		
			Yor	k.													
Course		A	t the	end o	of the	cours	e, lea	rners	will b	e able							
Outcomes		C	CO1:	To u	nders	tand 1	the p	hysica	al prir	nciples	of the	photov	oltaic	(PV) solar		
		c	ell an	d wha	at are	its so	urces	of los	sses.								
		0	CO2:	То	knov	w th	ne e	lectric	cal (current	t-voltag	e and	pov	ver-v	oltage)		
		c	haract	teristi	ics of	sola	r cell	l, pan	el or	gener	ator an	d how	the e	enviro	onment		
		p	arame	eters i	influe	nce it											
		C	CO3: '	To kr	now th	ne mo	st im	portar	it chai	acteris	stics of	the elen	nents	withi	n a PV		
		S	ystem	em, battery and charge controller, DC/DC converter, DC/AC converter													
		(i	nvert	verter) and loads. 94: To understand the role of solar energy in the context of regional and													
		0	CO4:	To u	nderst	and t	he ro	le of	solar	energy	in the	contex	t of 1	egior	al and		
		g	lobal	energ	gy sys	stem,	its e	conor	nic, s	ocial a	and env	ironme	ntal i	mplic	ations,		
		a	nd the	e imp	act of	techr	nolog	y on a	local	and gl	obal co	ntext.					
		C	CO5:	To 1	know	the	main	lines	of r	researc	h in th	ne field	of j	ohoto	voltaic		
		te	echno	logy a	and so	olar ei	nergy						-	-			
Mapping b	etwe	en CO	Os wi	ith P	Os an	d PS	Os										
Please refe								ie stv	le of	mapp	oing.						
Mapping b								J. J									
СО							PO							PS ()		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1																	
CO2																	
CO3																	
CO4																	
CO5																	

Course code	Energy Planning, Management and Economics
Course title	REE 609
Corse credit	3 (3+0)
Objective of Course	 To acquaint and equip with energy planning, management and economical evaluation for agricultural production system. To quantify, analyze and forecast the demand and supply of different energy for agriculture production system. To evaluate the techno economics of RET's use in industry and domestic
Course Contont	purposes.
Course Content	 Theory: Unit I Energy resources on the farm: Conventional and non-conventional forms of energy and their use. Heat equivalents and energy coefficients for different agricultural inputs and products. Pattern of energy consumption and their constraints in production of agriculture. Direct and indirect energy. Unit -II Energy audit of production agriculture and rural living and scope of conservation. Identification of energy efficient machinery systems, energy losses and their management. Unit III Energy analysis techniques and methods: Energy balance, output and input ratio, resource utilization, conservation of energy sources. Energy conservation planning and practices. Unit IV Energy forecasting, energy economics, energy pricing and incentives for energy conservation, factors effecting energy economics. Techno-economic evaluation of RET's, computation of programme for efficient energy management.
References:	 Fluck RC and Baird CD. 1984. Agricultural Energetics. AVI Publication, United State. Kennedy WJ and Turner WC. 1984. Energy Management. Prentice Hall, New Jersey. Pimental D. 1980. Handbook of Energy Utilization in Agriculture. CRC Press, Florida. Rai GD. 1998. Nonconventional Sources of Energy.Khanna Publication, New Delhi. Twindal JW and Wier AD. 1986. RenewableEnergy Sources. E & F N Spon, New York. Verma SR, Mittal JP and Singh S. 1994. Energy Management and Conservation in Agricultural Production and Food Processing. USG Publication, Chicago.
Course Outcomes Mapping between	At the end of the course, learners will be able CO1: To understand the current energy scenario along with energy management and strategies CO2: To take action on energy conservation techniques. CO3: To acquire the knowledge of financial management CO4: To analyze the data for energy monitoring and targeting. CO5: To analyse the techno economics of RETs'. COs with POs and PSOs

Please re	Please refer mapping of PO and PSO for the style of mapping.														
Mapping	Mapping between Cos, POs and PSOs														
CO	CO PO														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course codeCourse titleCorse creditObjective of	Renewable Energy for Industrial Application REE 610 3 (2+1)
	3 (2+1)
Objective of	
Course	 To provide the knowledge regarding the energy consumption pattern in agro based industries, quantification techniques and identification of opportunities for renewable energy sources. To acquaint with energy quantification techniques, design of system, economic evaluation and utilization of renewable energy sources for agro- industrial applications.
	3. To keep the knowledge of current thoughts and newer technology options along with their advances in the field of the utilization of different types of renewable energy technology and wastes for energy production.
Course Content	Theory:
	 Unit I Elucidation of unit operations in industry. Energy quantification techniques, system boundary, estimation of productivity, plant capacity utilization, energy density ratio and energy consumption pattern. Energy flow diagram conservation opportunities identification. Unit -II Solar energy for industrial application: Solar water heating, steam solar cooking system, industrial solar dryer and solar process heat, solar cooling system (refrigeration, air conditioning and solararchitecture technology), solar furnace
	and solar greenhouse technology for high-tech cultivation. Solar photovoltaic technology for industrial power.
	Unit III Bio energy for industrial application: Quantification of industrial bio-waste, characterization, power generation through bio-methanation, gasification and dendro thermal power plant. Unit IV
	Wind energy: Aero generator of new era and national and international state of art in wind powergeneration. Other renewable energy sources: Magneto hydro dynamics, fuel cells technology andmicro-hydro energy technology.
	Practicals: Elucidation and energy consumption for unit operations in industry. Study of energy quantification and identification of opportunities for RET's. Design of solar dryers. Design of solar photovoltaic system. Design of gasifiers for thermal energy and power generation. Design of combustor (gasifier stove). Study of solar greenhouse. Study of biogas engine generator set. Case study of agro-industrial energy estimation and visit to RSE power generation site.
References:	 Duffie JA and Beakman WA. 2006. Solar Energy Thermal Process. John Wiley and Sons,NewYork. Kumar S. 2011. Energy Conservation Building User Code Guide. Bureau of EnergyEfficiency,New Delhi. Rathore NS, Kurchania AK and Panwar NL. 2007. Non Conventional Energy Sources.Himanshu Publications, Udaipur, Rajasthan. Sayigh AAM. 2012. Solar Energy Engineering. Academic Press, New York. Singh P, Kurchania AK, Rathore NS and Mathur AN. 2005. Sustainable

			Deve	elopm	ent t	throug	gh Re	enewa	ble 1	Energy	Sourc	es. Y	ash	Public	ations,
			Bika	ner, R	lajast	han. P	rivate	e Lim	ited, I	Delhi.					
Course		A	t the	end o	f the	course	e, lear	rners	will b	e able					
Outcomes		0	:01: '	То ар	ply th	ne kno	wled	ge ab	out the	e opera	tion of	waste	to en	ergy pl	ants.
		0	CO2:	To an	alyze	e the v	variou	is asp	ects o	of differ	ent RE	Ts' an	d wa	ste to	energy
		р	lant.												
		C	CO3: '	D3: To apply the knowledge in planning & operation of waste to energy											
		р	lants.	ants.											
Mapping b	etwe	en CO	Os with POs and PSOs												
Please refe	er ma	appir	ng of	PO a	nd F	PSO f	or th	ne sty	le of	mappi	ing.				
Mapping	betw	een (Cos, I	POs a	nd F	PSOs									
CO							PO							PSC)
	1	2	3	3 4 5 6 7 8 9 10 11 12 1 2 3											
CO1															
CO2															
CO3															

Course code	Biofuel Technologies and Applications
Course title	REE 611
Corse credit	2 (1+1)
Objective of Course	 To acquaint recent biofuel production technologies and their applications. To perform financial estimations of the biofuel projects. To get insight of the various biofuel technologies. To understand the bio-fuel production technologies with financial viability and applications of bio-fuel in different sector of development.
Course Content	Theory:
	Unit I Liquid biofuels: Non-edible oilseeds, oil extraction, pre-processing,
	characterization. World scenario: Liquid fuel challenges and some solutions. Liquid bio-fuel applications.
	Unit -II
	Bioethanol: First and second generation ethanol production technologies. Production of syngas from biomass, production of methanol from syngas, production of ethanol from lingo-cellulosic biomass. Syngas and poly- generation, chemical conversion of syngas to methanol and ethanol and some advanced fuels like bio butanol, bio propanol. Unit III
	BioCNG: Biogas to green vehicle fuel, anaerobic digestion. Bio gas opportunities: Landfill gas, agricultural and industrial wastewater and additional sources of methane. Unit IV
	Biodiesel: Feedstock for biodiesel, manufacturing processes for biodiesel, value addition by utilization of by-products, environmental impacts of biodiesel, biodiesel from algae, biodiesel engines. Unit V
	Pyrolysis oil: Fast pyrolysis technologies, composition and issues of bio oil. Bio oil upgradationtechnologies.
	Practicals: Evaluation of liquid fuel system for heat and power generation and characterization of liquid fuel,trans-esterification process. Engine performance on biodiesel. Biogas engine system for transport vehicle. Bio oil production by pyrolysis.
References:	1. Boyle G. 2008. <i>Renewable Energy</i> . Atlantic Publishing Company, New
	 Delhi. 2. Gonsalves JB. 2006. An Assessment of the Biofuels Industry in John India. Wiley & Sons,New Delhi. 3. Kishore VVN. 2008. Renewable Energy Engineering and Technology–A KnowledgeCompendium. Education. TERI Press, Delhi. 4. Klass D. 1998. Biomass for Renewable Energy, Fuels, and Chemicals. Entech International,Barrington, Illinois, USA. 5. Mitzlaff KV. 1988. Engines for Biogas–Theory, Modification, Economic Operation. Deutsches 6. Zentrum für Entwicklungs technologien–GATE, Germany.

Course		A	t the	end o	of the	cours	e, lea	rners	will b	e able					
Outcomes		C a C p f c C lii g C	CO1: nd pro CO2: roces or bio CO3: quefa enera CO4:	To cl operti To sing t mass To u action tion e To u	naract es. under echni conve nders for ptc. nders	erize rstanc ques ersion tand produ tand	differ and n tern proc he pr ction basic	rent b l evans of esses. rocess of v s of l	iomas luate their of co alue a	ss feeds variou applica ombust added	ıs bio bility f ion, py bio-pro	based of mass p or differ vrolysis, ducts, t	retrea cent b gasin bioga	atmen iomas ficatio s, bio	t and as type on and -CNG
Mapping b	oetwe														
Please ref								ne sty	le of	mapp	ing.				
Mapping	betw	een (Cos, I	POs a	and F	SOs									
CO							PO							PSC)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															

Course code	Energy Modelling and Simulation
Course title	REE 612
Corse credit	2 (1+1)
Objective of	1. To provide in depth knowledge about various mathematical models,
Course	interdependence of energy, ecology and environment, energy modelling in
	the context of climate change.
	2. To learn energy modelling of gasification, pyrolysis, biogas system,
	fermentation, biodiesel production system, solar and wind technologies etc.
	3. To impart basic skill of model development and optimization in the
	field of energy.
	4. To develop basic skill of development of energy system model and to
	enable learners to use system modeling as tool for optimization vis-à-
	vis decision making on energy related field problems.
Course Content	Theory:
	Unit I
	Model: Basics, system, boundary, interaction, types of models, physical,
	analogy models and applications. Mathematical models: Concepts, input, output model, stochastic, deterministic, empirical models, linear, non-linear
	models, interdependence of energy, economy, environment, modelling
	concept and application. Unit -II
	Energy Modelling: Review of various energy sector models, energy demand
	analysis and forecasting, energy supply assessment and evaluation, energy
	demand, supply balancing, energy modelling in the context of climate change.
	Unit III
	Model studies in gasification, pyrolysis, biogas, fermentation, biodiesel, solar,
	wind technologies and heat transfer applications. Moving boundary models.
	Unit IV
	Energy economics of energy sources: Investment and cost management in
	various energy technologies. Economics of energy generation, energy
	conservation economics, financial analysis, sensitivity and risk analysis.
	Practicals:
	Formulating dimensionless numbers, applications, types of models,
	mathematical model formulation and types, Software's and model evaluation.
	Development of models in thermo- chemical and biochemical conversion
	processes. Studies on model development in solar and wind technologies,
	economics of energy generation and conservation, financial analysis.
References:	1. Desai AV 1990. <i>Energy Planning and Economics</i> . New Age International
	Publication Limited, New Delhi.
	2. Munasinghe M and Meier P 1993. <i>Energy Policy Analysis and Modelling</i>
	(<i>Cambridge Energy and Environment Series</i>). Cambridge University Press,
Course	England.
Course	At the end of the course, learners will be able CO1: To comprehend the basic principles of modelling and simulation of
Outcomes	energy systems.
	CO2: To demonstrate the ability to formulate, mathematically describe,
	numerically solve and analyse solar energy conversion processes, using
	advanced numerical tools such as CFD.

		 CO3: To demonstrate the ability to assess the technical and economic performance of PV units and their integration into the energy system. CO4: To understand how to develop a model, and how to apply varies strategies for different parametric model. CO5: To optimize the energy systems and to understand the working principles econometric modeling. 													
Mapping	betwe	en C	n COs with POs and PSOs												
Please ref	efer mapping of PO and PSO for the style of mapping.														
Mapping	betw	een (Cos, I	POs	and l	PSOs	5								
CO			-				PO)						PSC)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	Do	Doctoral Seminar-I												
Course title		EE 69		IIIIaI										
Corse credit		0+1)	1											
Objective of	6.7	'o pre									er in R	enew	able I	Energy
Course	7.1 s ⁴ 8.7 s c 9.7 c 10.	Yo en cienc roble Yo p ystem onstra Yo tra haller	able es ai ms. roduc a/com aints. in the nges v To cr	the stind m re sk poner e stude vith e eate a	tuden hather tillful ht/ pr ents t conor n awa	ts to natics gra rocess o app nic, e arene	aptly aptly duate s for proach nviron ss am	appl solvi s to the ethic nment ong th	y their ng Re analy requir cally ar cal and ne stud	enewabl yze, do ed nee ny multi social c ents abo	dards. red kno le Ener esign a eds und idiscipli ontexts out the r	rgy and ler ti nary	Engin devel he re engin	eering lop a ealistic eering
Course Conten		earning to succeed in their professional career.												
References:	-													
Course	At	At the end of the course, learners will be able												
Outcomes Mapping betwe Please refer ma	and CC and CC tas CC equ CC and and en CO pping	1 solv)2: T 1 inte:)3: T ks.)4: T 1 ipme)5: T 1 in b 1 abil s with 3: of P	e eng o der rpret o o vis o dem ent to o der oth ve ity for a POs O an	ineeri nonstr lata. ualize nonstr analy: nonst erbal a <u>c life-l</u> and F d PSC	ng pr rate th ate th ze pro rate t and w long 1 2SOs 2 for	oblen he ab abilit e skil oblem the ki ritten earnin	ns. ility t y and ls to u s. nowle form ng.	worl worl use mo dge c and t	ign and c on la odern e of profe o devel	d condu borator engineer essional	lity to id act expe y and r ing tool , ethica	erime nulti- ls, sof	nts, a discip tware	nalyze blinary e's and bilities
Mapping betw														
CO						PO							PSC)
1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1														
CO2														
CO3														
CO4														
CO5														

Course code	Do	Doctoral Seminar-II												
Course title		EE 69												
Corse credit		0+1)												
Objective of Course	6. 7. 8. 9.	To pr Engin educa To en science other To p system constru- To tra challe	tion s nable ces ar discip produce n/con raints. ain the enges To cree	g pro tanda the s ad ma oline r ce sl apone e stud with e eate a	ofession rds. tuden them them elated killful nt/ p ents t econo n awa	on w ts to atics l prob gra roces o app mic, e urenes	aptly in so plems. duate s for proach enviro	multi- y appl lving es to the ethic onmen	discipl ly thei Renew anal requin cally ar ital anci ie stud	ful care linary a r acquin wable E yze, da red nee ny multi l social a ents abo	aspects red kno nergy E esign a eds und discipli contexts	throu wledg Engine and ler th nary e	igh ge in eering develo ne rea engine	global basic with op a alistic eering
Course Conten		learning to succeed in their professional career.												
References:	-													
Course	At	the en	nd of t	he co	urse,	learne	ers wi	ll be a	able					
Outcomes Mapping betwee	and CC and CC tas CC equ CC and and	1 solv)2: T 1 inter)3: T ks.)4: T 1 in be 1 in be 1 abili	e engi o den pret c o visu o dem nt to a o den oth ve	neerii ionstri lata. ialize onstra analyz nonstr rbal a life-l	ng pro rate the the a ate the ze pro rate the rate the ong le	oblem ne abi ability e skill blems he kn ritten	is. ility t and s to u s. owled form	o des work se mo	ign and c on la odern e f profe	the abil d condu boratory engineer essional op conf	y and n ing tool , ethica	rimen nulti-c s, soft 1 resp	nts, an discip tware ³ ponsib	aalyze linary 's and ilities
Please refer ma						he et	vle of	man	nina					
Mapping betwo	<u> </u>	,				ne st	yie of	шар	hung.					
CO		PO PSO												
1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1		-			-						_			-
CO2														
CO3														
CO4														
CO5														

Course cod	le	Do	ctora	Res	earch																				
Course title		-	E 69																						
Corse cred			(0+75																						
Objective of	of	-		,	le a	con	npreh	ensive	e un	derstan	ding o	of the	con	cepts	and										
Course												t prep													
		6	evalua	ation	and pi	oject	finan	cing			1 5				5										
		5. 7	Го т	ake t	he st	udent	unde	erstan	d the	projec	t cycle	and th	neir v	vide s	socio-										
					nd en						•														
		6. 7	Го т	ake t	he st	udent	learı	1 hov	to o	evaluat	e a pro	oject in	view	of g	global										
		0	conce	rn abo	out su	staina	able d	evelo	pmen	t of ene	rgy and	enviro	nmen	t proje	ects										
Course Co	ntent	-																							
References	:	-																							
Course		At	t the end of the course, learners will be able																						
Outcomes			O1: To identify various practical issues related Renewable Energy																						
		Eng	ngineering and Environmental features of a project.																						
		CO	O2: Laboratory/machine/ gadget development and field based study.																						
		CO	3: S	mall	and c	compi	rehen	sive j	orojec	ts for	renewa	ble ene	ergy e	engine	eering										
		dev	elopr	nent a	and su	staina	ability	7.																	
											echnolo	gy/syste	ems	and g	global										
		env	vironn							saving.															
		CO	5:	To	carry	out	techr	no-eco	nomi	c eval	uation	of Rei	newał	ole E	nergy										
		-	-	·	v		-	ed wi	th ot	her con	nventio	nal syst	tems	as w	ell as										
					cons		ions.																		
Mapping be																									
Please refe							the st	yle of	map	ping.															
	etwee	n Co	Cos, POs and PSOs																						
CO		_	PO PSO PSO																						
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3										
CO1																									
CO2												-													
CO3								-																	
CO4							-					-													
CO5																									

Degree: M. Tech. (Agril. Engg.)

Maor Subject: Processing and Food Engineering

Course code	PFE – 501
Course title	Transport Phenomena in Food Processing
Corse credit	3 (2 + 1)
Objective of Course	 To acquaint and equip the students with the principles of heat transfer and its applications in food processing. To acquaint and equip the students with the principles of mass transfer and its applications in food processing. To acquaint and equip the students with the principles of momentum transfer and its applications in food processing.
Course Content	Introduction to heat and mass transfer and their analogous
	behaviour, steady and unsteady state heat conduction, analytical and numerical solution of unsteady state heat conduction equations, use of Gurnie-Lurie and Heisler Charts in solving heat conduction problems. Applications in food processing including freezing and thawing of foods. Convective heat transfer in food processing systems involving laminar and turbulent flow heat transfer in boiling liquids, heat transfer between fluids and solid foods. Functional design of heat exchangers: Shell and tube, plate and scraped surface heat exchangers, Jacketed vessels. Radiation heat transfer and its governing laws, its applications in food processing. Molecular diffusion in gases, liquids and solids; molecular diffusion in biological solutions and suspensions molecular diffusion in solids, unsteady state mass transfer and mass transfer coefficients, molecular diffusion with convection and chemical reaction, diffusion of gases in porous solids and capillaries, mass transfer applications in food processing.
References:	 Benjamin G. 1971. Heat Transfer. 2nd Ed. Tata McGraw Hill. Coulson JM & Richardson JF. 1999. Chemical Engineering. Vol. II, IV.The Pergamon Press. Earle RL. 1985. Unit Operations in Food Processing. Pergamon Press. EcKert ERG & Draker McRobert 1975. Heat and Mass Transfer. McGraw Hill. Geankoplis J Christie 1999. Transport Process and Unit Operations. Allyn & Bacon. Holman JP. 1992. Heat Transfer. McGraw Hill. Kreith Frank 1976. Principles of Heat Transfer. 3rd Ed. Harper & Row. McCabe WL & Smith JC. 1999. Unit Operations of Chemical Engineering. McGraw Hill. Treybal RE. 1981. Mass Transfer Operations. McGraw Hill. Warren Gredt H. 1987. Principles of Engineering Heat

				Tra	ansfe	r. Af	filiate	d Ea	st-We	est Pre	ss.					
Course Ou	tcom	es		At th	e enc	l of t	he co	urse,	learn	ers wi	ll be ab	le				
				CO1	: T	o i	mpar	t re	equisi	te kr	nowled	ge al	oout	tran	sport	
				phen	omer	non v	vith r	espec	ct to I	heat, n	nass an	d mon	nentu	m tra	nsfer	
				whic	hich is necessary to understand the food processing operations.											
				CO ₂	O2 : At the end of courses, students will be able to understand,											
				analy	nalyse and solve numerically the food processing operations											
				when	e hea	ıt/ma	ss/mo	omen	tum t	ransfer	r is inv	olved.				
Mapping	betw	een (Cos, I	POs a	nd P	SOs										
CO							PO							PSO		
	1	2	3	4	4 5 6 7 8 9 10 11 12 1 2 3											
CO1										-						
CO2																

Course code	PFE - 502
Course title	Engineering Properties of Food Materials
Corse credit	3(2+1)
Objective of Course	 To acquaint the students with different techniques of measurement of engineering properties To acquaint the students with importance of engineering properties in the design of processing equipment.
Course Content	Physical characteristics of different food grains, fruits and vegetables; Shape and size, description of shape and size, volume and density, porosity, surface area. Rheology; ASTM standard, terms, physical states of materials, classical ideal material, rheological models and equations, visco- elasticity, creep-stress relaxation, Non-Newtonian fluid and viscometry, rheological properties, force, deformation, stress, strain, elastic, plastic behaviour. Contact stresses between bodies, Hertz problems, firmness and hardness,
	mechanical damage, dead load and impact damage, vibration damage, friction, effect of load, sliding velocity, temperature, water film and surface roughness. Friction in agricultural materials, rolling resistance, angle of internal friction, angle of repose, flow of bulk granular materials, aero dynamics of agricultural products, drag coefficients, terminal velocity.
	Thermal properties: Specific heat, thermal conductivity, thermal diffusivity, methods of determination, steady state and transient heat flow. Electrical properties; Dielectric loss factor, loss tangent, A.C. conductivity and dielectric constant, method of determination, energy absorption from high-
	frequency electric field. Application of engineering properties in design and operation of agricultural equipment and structures.

References:	 Experiments for the determination of physical properties like, length, breadth, thickness, surface area, bulk density, porosity, true density, coefficient of friction, angle of repose and colour for various food grains, fruits, vegetables, spices and processed foods, aerodynamic properties like terminal velocity, lift and drag force for food grains, thermal properties like thermal conductivity, thermal diffusivity and specific heat, firmness and hardness of grain, fruits and stalk, electrical properties like dielectric constant, dielectric loss factor, loss tangent and A.C. conductivity of various food materials. Mohesenin NN. 1980. Physical Properties of Plant and Animal Materials, Gordon & Breach Science Publ. Mohesenin NN. 1980.Thermal Properties of Foods and Agricultural Materials. Gordon & Breach Science Publ. Peleg M & Bagelay EB. 1983. Physical Properties of Foods. AVI Publ. Rao MA & Rizvi SSH. (Eds.). 1986. Engineering Properties of Foods. Marcel Dekker. Ronal Jowitt, Felix Escher, Bengt Hallsrram, Hans F, Th. Meffert, Walter EC Spices, Gilbert Vox. 1983. Physical Properties of Foods. Applied Science Publ.
Course Outcomes	 Singhai OF & Sandel DVK. 2003. Engineering Properties of Biological Materials. Saroj Prakasan At the end of the course, learners will be able
Course Outcomes	Biological Materials. Saroj PrakasanAt the end of the course, learners will be ableCO1: Student's capability to apply properties of food for design
Course Outcomes	Biological Materials. Saroj PrakasanAt the end of the course, learners will be ableCO1: Student's capability to apply properties of food for design of equipment.
Course Outcomes	Biological Materials. Saroj PrakasanAt the end of the course, learners will be ableCO1: Student's capability to apply properties of food for design of equipment.CO2: Student's capability to apply properties of food for design
	Biological Materials. Saroj PrakasanAt the end of the course, learners will be ableCO1: Student's capability to apply properties of food for design of equipment.CO2: Student's capability to apply properties of food for design of structures.
Course Outcomes Mapping between Cos CO	Biological Materials. Saroj PrakasanAt the end of the course, learners will be ableCO1: Student's capability to apply properties of food for design of equipment.CO2: Student's capability to apply properties of food for design of structures.
Mapping between Cos	Biological Materials. Saroj Prakasan At the end of the course, learners will be able CO1: Student's capability to apply properties of food for design of equipment. CO2: Student's capability to apply properties of food for design of structures. s, POs and PSOs
Mapping between Cos	Biological Materials. Saroj Prakasan At the end of the course, learners will be able CO1: Student's capability to apply properties of food for design of equipment. CO2: Student's capability to apply properties of food for design of structures. s, POs and PSOs PO PSO

Course code	PFE - 503
Course title	Advanced Food Process Engineering
Corse credit	3 (2 + 1)
Objective of Course	 To acquaint the students with different unit operations of food industries To acquaint the students with design features of processing equipment.
Course Content	Thermal processing: Death rate kinetics, thermal process calculations, methods of sterilization and equipments involved, latest trends in thermal processing. Evaporation: Properties of

References:	 liquids, heat and. mass balance in single effect and multiple effect evaporator, aroma recovery, equipments and applications. Drying: Rates, equipments for solid, liquid and semi-solid material and their applications, theories of drying, novel dehydration techniques. Non-thermal processing: Microwave, irradiation, ohmic heating, pulsed electric field preservation, hydrostatic pressure technique etc. Freezing: Freezing curves, thermodynamics, freezing time calculations, equipments, freeze drying, principle, equipments. Separation: Mechanical filtration, membrane separation, centrifugation, principles, equipments and applications, latest developments in separation and novel separation techniques. Extrusion: Theory, equipments, applications. Distillation and leaching: Phase equilibria, multistage calculations, equipments, solvent extraction. Solving problems on single and multiple effect evaporator, distillation, crystallisation, extraction, leaching, membrane separation and mixing, experiments on rotary flash evaporator, humidifiers, reverse osmosis and ultra filtration - design of plate and packed tower, visit to related food industry. Brennan JG, Butters JR, Cowell ND & Lilly AEL 1990. Food Engineering Operations. Elsevier. Coulson JM & Richardson JF. 1999. Chemical Engineering. VolS. II, IV. The Pergamon Press. Earle RL. 1985. Unit Operations in Food Processing. Pergamon Press. Fellows P. 1988. Food Processing Technology: Principle and Practice. VCH Publ. Geankoplis J Christie. 1999. Transport Process and Unit Operations. Allyn & Bacon. Henderson S & Perry SM. 1976. Agricultural Process Engineering. 5th Ed. AVI Publ. Sabay KM & Singh KK 1994. Unit Operations of Chemical Engineering. McGraw Hill.
	• McCabe WL & Smith JC. 1999. Unit Operations of
Course Outcomes	At the end of the course, learners will be able; CO1: Student's capability to understand advanced food processing applications as per requirement of food industries. CO2: Student's capability to preserve food products using advance techniques as per requirement of food industries. CO3: To acquaint the students with recent technologies in food processing.

Mapping	betw	een (Cos, I	POs a	nd P	SOs										
CO		PO														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1																
CO2																
CO3																

Course code	PFE 504
Course title	Unit Operations in Food Process Engineering
Corse credit	3(2+1)
Objective of Course	1. To acquaint and equip the students with different unit
	operations applicable in food industries.
	2. To understand the scope and importance of various food
	processing operations with basic engineering mathematics and
	mass & energy balance.
	3. To understand the laws of size reduction, theory of mixing and importance of material handling devices.
Course Content	Review of basic engineering mathematics; Units and
	dimensions; Mass and energy balance. Psychrometry,
	dehydration, EMC, Thermal processing operations; Evaporation,
	dehydration/drying, types of dryers, blanching, pasteurization,
	distillation, steam requirements in food processing. Refrigeration
	principles and Food freezing. Mechanical separation techniques,
	size separation equipments; Filtration, sieving, centrifugation,
	sedimentation. Material handling equipment, conveyors and
	elevators; Size reduction processes; Grinding and milling.
	Homogenization; Mixing- mixers, kneaders and blenders.
	Extrusion. Membrane technology. Non-thermal processing
	techniques. Food plant design; Food plant hygiene- cleaning,
	sterilizing, waste disposal methods, engineering aspects of
	radiation processing. Food packaging: Function materials,
Defence	technique, machinery and equipment.
References:	Brennan JG, Butters JR, Cowell ND & Lilly AEI. 1990. Food Expire Amountain Conceptions, Electrical
	Engineering Operations. Elsevier.Earle RL. 1985. Unit Operations in Food Processing.
	Pergamon Press.
	Fellows P. 1988. Food Processing Technology: Principle and
	Practice. VCH Publ.
	McCabe WL & Smith JC. 1999. Unit Operations of Chemical
	Engineering. McGraw Hill.
	• Sahay KM & Singh KK. 1994. Unit Operation of Agricultural
	Processing. Vikas Publ. House.
	• Singh RP & Heldman DR. 1993. Introduction to Food
	Engineering. Academic Press
Course Outcomes	At the end of the course, learners will be able
	CO1: To acquaint the students with various unit operations in
	food process engineering.
	CO2: To acquaint the students with various types of dryers,

				blan	ching	g, pas	steuri	zatio	n pro	cesses	•				
				CO	3 : To	o exp	olain	the f	uncti	ons of	vario	us unit	oper	ratior	is an
				wor	king	of s	ize 1	reduc	tion	equipr	nents	in pro	cessir	ng of	foo
			materials. CO4: To explain the design and working of mixing equip												
				CO	4: To	o exp	lain 1	the de	esign	and w	orking	of mi	xing e	equip	ment
				for ₁	powd	ler, hi	igh a	nd lo	w vis	cosity	liquids	•			
				CO	5: Cl	lassif	y me	chan	ical s	eparati	ion tec	hnique	s & 6	equip	ment
				and	non-	thern	nal pi	oces	sing t	echniq	ues.				
Mappin	σ hetu	veen (Cos.	POs	and	PSO	2								
ուսիհա	is Det n	cen	000,				,								
CO			<u> </u>				, PO)						PSC)
	1	2	3	4	5	6		8	9	10	11	12	1	PSC 2)
	1	1	1			1.		-	9	10 -	11	12	1		-
CO	1	1	1			1.		-	9	10 - -	11	12 - -	1		-
CO CO1	1	1	1			1.		-	9	10 - - -	11	12 - - -	1		-
CO CO1 CO2	1	1	1			1.		-	9	-	11	12 - - - -	1		-

Course code	PFE 505
Course title	Energy Management in Food Processing Industries
Corse credit	3 (2 + 1)
Objective of Course	 To acquaint and equip the students with different energy management techniques in food industries. To understand the scope and importance energy auditing in food industries.
Course Content	Energy forms and units, energy perspective, norms and scenario; energy auditing, data collection and analysis for energy conservation in food processing industries. Sources of energy, its audit and management in various operational units of the agro- processing units; passive heating, passive cooling, sun drying and use of solar energy, biomass energy and other non- conventional energy sources in agro-processing industries. Reuse and calculation of used steam, hot water, chimney gases and cascading of energy sources. Energy accounting methods, measurement of energy, design of computer-based energy management systems, economics of energy use. Study of energy use pattern in various processing units i.e., rice mills, sugar mills, dal mills, oil mills, cotton-ginning units, milk plants, food industries etc. Energy udit study and management strategies in food processing plants. Identification of energy efficient processing machines. Assessment of overall energy consumption, production and its cost in food processing plants, visit to related food processing industry.
References:	 Pimental D. 1980. Handbook of Energy Utilization in Agriculture. CRC Press. Rai GD. 1998. Non-conventional Sources of Energy. Khanna Publ. Twindal JW & Anthony D Wier 1986. Renewable Energy

								F. N. S	1		andro	Singh.	100	14 E	norau			
												0						
					Management and Conservation in Agricultural Production and Food Processing. USG Publ. & Distr., Ludhiana.													
Course Ou	,																	
	CO1: To acquaint the students with various energy perspective													ective				
	and norms in food process engineering.																	
	CO2: To acquaint the students with various sources of ene												nergy					
				and	energ	gy au	diting	g.										
				CO3	3 : To	expl	ain tł	ne cal	culati	on and	l stean	n econo	my					
Mapping	betw	een (Cos, I	POs a	and H	PSOs												
CO							PO)						PSC)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3			
CO1										-		-						
CO2										-		-						
CO3										-		-						

Course code	PFE 506
Course title	Processing of Cereals, Pulses and Oilseeds
Corse credit	3 (2 + 1)
Objective of Course	 To acquaint and equip the students with the post harvest technology of cereals, pulses and oilseeds. To understand the performance evaluation of different types of
	cleaners and separators, size reduction machines.
	 To understand the laws of size reduction, theory of mixing and milling of cereals, pulses and oilseeds.
Course Content	Production and utilization of cereals and pulses, grain structure of major cereals, pulses and oilseeds and their milling fractions; grain quality standards and physico-chemical methods for evaluation of quality of flours. Pre-milling treatments and their effects on milling quality; parboiling and drying, conventional, modern and integrated rice milling operations; wheat roller flour milling; processes for milling of corn, oats, barley, gram, pulses, paddy and flour milling equipments. Dal mills, handling and storage of by-products and their utilization. Storage of milled products, Expelled and solvent extraction processing, assessment of processed product quality. Packaging of processed products, design characteristics of milling equipments; selection, installation and their performance, BIS standards for various processed products.
References:	 Asiedu JJ.1990. Processing Tropical Crops. ELBS/MacMillan. Chakraverty A. 1995. Post-harvest Technology of Cereals, Pulses and Oilseeds. Oxford & IBH. Morris Lieberman. 1983. Post-harvest Physiology and Crop
	 Preservation. Plenum Press. Pandey PH. 1994. Principles of Agricultural Processing. Kalyani.

Course Ou	tcom	es		Ea • Sa At th CO1 oper CO2 meth CO3 diffe CO4 solve CO5	astern hay l gricul ations : Ex- nods f : Ex- rent of : Ex- ent ex- : Ex- : Ex- ent ex- : Ex-	KM & KM & l of the o access of c sof c sof c sof c splain cereal splain stract splain	& Sin <u>Prod</u> he co quain ereal n the raluat n the ls, pu n the ion p	gh K cessin urse, t the , puls grain ion o e diff llses a pre roces	K. 19 <i>ag.</i> V learne stu ses and qual f qua ferent and o -mill sing.	994. Ur ikas Pu ers wil dents doil se ity star lity of t types ilseeds ing tre	<i>nit Ope</i> <u>ibl. Ho</u> Il be ab with eeds. ndards flours. s of r eatmen	ole various and ph	s in s pos aysico ope exp	st ha o-che ration ellers	mical ns of and
Monning	hotw	00 n (BIS standards. POs and PSOs											
	betw	een (.08,1		ina P	305	PO							PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-		-	-	_	-	-	~	-	-		-			
CO2										-		-			
CO3										-		-			
CO4										-		-			
CO5										-		-			

Course code	PFE 507
Course title	Food Processing Equipment And Plant Design
Corse credit	3 (2 + 1)
Objective of Course	1. To acquaint and equip the students with the design
	features of different food processing equipments
	being used in the industries and with the layout.
	2. To understand the planning of different food and
	processing plants.
Course Content	Design considerations of processing agricultural and food
	products. Design of machinery for drying, milling, separation,
	grinding, mixing, evaporation, condensation, membrane
	separation. Human factors in design, selection of materials of
	construction and standard component, design standards and
	testing standards. Plant design concepts and general design
	considerations: plant location, location factors and their
	interaction with plant location, location theory models, computer
	aided selection of the location. Feasibility analysis and
	preparation of feasibility report: plant size, factors affecting plant
	size and their interactions, estimation of break-even and
	economic plant size; Product and process design, process
	selection, process flow charts, computer aided development of
	flow charts. Hygienic design aspects and worker's safety,
	functional design of plant building and selection of building
	materials, estimation of capital investment, analysis of plant

				inclu	ıding	appli	icatic	ons of		-		niques prepar	-		-
References	 report and its appraisal. Ahmed T. 1997. Dairy Plant Engineering and Manage 4th Ed. Kitab Mahal. Chakraverty A & De DS. 1981. Post-harvest Technolo Cereals, Pulses and Oilseeds. Oxford & IBH. Gary Krutz, Lester Thompson & Paul Clear. 1984. Des Agricultural Machinery. John Wiley & Sons. Hall CW & Davis DC. 1979. Processing Equipme Agricultural Products. AVI Publ. Henderson S & Perry SM. 1976. Agricultural F Engineering. 5th Ed. AVI Publ. Johnson AJ. 1986.Process Control Instrumen Technology. 2nd Ed. Wiley International & ELBS. Rao T. 1986. Optimization: Theory and Applications. 2 Wiley Eastern. Richey CB. (Ed.). 1961. Agricultural Engineers' Hand McGraw Hill. Romeo T Toledo. 1997. Fundamentals of Food F Engineering. CBS. Slade FH. 1967. Food Processing Plant. Vol. I. Leonar Books 										Desi Desi pmen I Pr ument as. 2n and H d Pr	gy of gn of t for ocess cation d Ed. Book. ocess			
Course Ou	tcom	es		At the end of the course, learners will be able CO1: To acquaint the students with various design considerations of processing agricultural and food products. CO2: To acquaint the students with design of machinery for drying, milling, separation, grinding, mixing. CO3: To explain the different Plant design concepts and general design considerations. CO4: Explain the feasibility analysis and preparation of feasibility report. CO5: Explain the management techniques in plant design											
Mapping	betw	een (Cos, I						proje	ct repo	<i>.</i>		1		
CO	1	2	2	4	5	(PO 7	0	Δ	10	11	10	1	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
										-		1 -			
CO1										_					
CO2										-		-			
-										-		-			

Course code	PFE 508
Course title	Fruits and Vegetables Process Engineering
Corse credit	2 (2 + 1)
Objective of Course	1. To acquaint and equip the students with processing of

					2				0	tables.		of the e	auin	ments	used
							-			ssing.			4 **P	lineines	asea
Course Co	ntent		 Importance of post harvest technology of fruits and vegetables structure, cellular components, composition and nutritive val of fruits and vegetables, fruit ripening, spoilage of fruits are vegetables. Harvesting and washing, pre-cooling, preservation fruits and vegetables, blanching, commercial canning of fruit and vegetables, minimal processing of fruits and vegetable. Cold storage of fruits and vegetables, gas composition, quality storage. Dehydration of fruits and vegetables, methods, osmood dehydration, foam mat drying, freeze drying, microwave heatir applications, radiation preservation of fruits and vegetable irradiation sources. Intermediate moisture foods, ohmic heating principle, high pressure processing of fruits and vegetable applications, sensory evaluation of fruits and vegetables, gener principles of quality standards and control, FPO, quality attributes. 												value and on of ruits bles. ohere ty of notic ting, bles, ating bles, ucts, neral
References	:			 Cri A M Pr Sri Pr D Su Pr TI V V 	ruess grobi ircea ocess ivast eserv istr. iman ocess nomp egeta erma	s WV os. En sing. ava H vation bhatt sing. bhatt bles. LR	iache Interr RP & n. Pr i & CBS AK. Blac & Jc	sca nation San incip Uma 1996. kwell oshi	Dant nal B jeev les a a Va Post l. VK. 2	thy. ook Pu Kuman ind Pi rma. Harve 2000.	1997.F ibl. : 1994 actices 1995. est Tec Post H	Fruit a 4. Fruit s. Inter Fruit chnolog Iarvest	and and rnation and gy of	Veget Veget onal I Veget Fruits	table table Book table
Fruits and Vegetables. Vols. I-II. Indus PublCourse OutcomesAt the end of the course, learners will be ableCO1:To acquaint the students with scope and importationpost harvest technology of fruits and vegetables.CO2:CO2:Explain the composition and nutritive value of fruitsvegetables.CO3:CO3:Explain the harvesting and washing, pre-coolingpreservation techniques of fruits and vegetables.											f fruits	and and			
apping bet CO	tweei	n Co:	s, PC	meth CO5 FPO	ods o 5: Ex stand	of fru xplair <u>dards</u>	its ar n foo PO	nd ve	getab	les.	-	d laws	-		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	1	4	5		-	Ŭ,		U	1	10	11	14		2	0
CO1	1	2	5	-			-			-	11	-	1	2	

CO3					-	-		
CO4					-	-		
CO5					I	-		

Course code	PFE -509
Course title	Meat Processing
Corse credit	3 (2 + 1)
Objective of Course	 To acquaint and equip the students with meat and meat products. To impart knowledge on the design features of the equipment used for meat processing.
Course Content	Meat and poultry products: Introduction, kinds of meat animals and poultry birds, classification of meat, composition of meat. Slaughtering: Pre slaughter operations, post slaughter operations, wholesale and retail cuts. Preservation of poultry: different methods, stuffed products, frozen products, poultry concentrates and flavours, synthetic poultry flavour. Different preservation methods of meat: Smoking, curing and freezing, chilling of meat and different methods of chilling, freezing of meat and different methods of freezing of meat, physical and chemical changes during chilling and freezing, packaging of meat and meat products, quality control. Classification, composition and nutritive value of eggs: Grading of eggs, different quality parameters of eggs, Haugh unit, processing of egg, yolk processing, egg breaking mechanisms, freezing of egg, pasteurization, desugarisation and dehydration of egg, different dehydration methods, quality control and specification of egg products. Fish: Nutritional quality of fish and fish products, fillet and steaks, different preservation techniques, chilling, freezing, drying, canning, curing and smoking, quality control in fish processing.
	Experiments in slaughtering, dressing, wholesale and retail cutting: Curing, preservation of meat and meat products, estimation of quality of egg, Haugh unit, desugarisation, preparation of whole egg powder, yolk powder, freezing of fish, drying of fish, canning of fish, visit to meat and fish processing units
References:	 Chooksey MK & Basu S. 2003. Practical Manual on Fish Processing and Quality Control. CIFE, Kochi. Chooksey MK. 2003.Fish Processing and Product Development. CIFE, Kochi. Hall GM. 1997.Fish Processing Technology. Blabie Academic & Professional. Lawrie RS. 1985.Developments in Meat Sciences. Vol. III. Applied Science Publ. Mead GC. 1989. Processing of Poultry. Elsevier. Pearson AM & Tauber FW. 1984. Processed Meats. AVI

				 Publ. Stadelman WJ & Cotterill OJ. 1980. Egg Science and Technology. AVI Publ. 											
Course Ou	At the end of the course, learners will be able														
Mapping	CO1: Student's capability to process meat, fish and poultry. CO2: Student's capability to manufacture value added products of meat as per requirement of food industries. between Cos, POs and PSOs														
CO			,				PO							PSO	
	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3														
CO1										-					
CO2										-					

Course code	PFE - 510
Course title	Food Packaging
Corse credit	3 (2 + 1)
Objective of Course	1. To acquaint and equip the students with packaging methods, packaging materials, packaging machineries etc.,
	2. To acquaint and equip the students with modern packaging techniques for perishable and processed foods
	3. To acquaint and equip the students with package standard and regulation used in food industry
Course Content	Introduction of packaging: Package, functions and design. Principle in the development of protective packaging. Deteriorative changes in foodstuff and packaging methods of prevention. Food containers: Rigid containers, glass, wooden boxes, crates, plywood and wire bound boxes, corrugated and fibre board boxes, textile and paper sacks, corrosion of containers (tin plate); Flexible packaging materials and their properties; Aluminium as packaging material; Evaluation of packaging material and package performance. Packaging equipments: Food packages, bags, types of pouches, wrappers, carton and other traditional package; Retortable pouches; Shelf life of packaged foodstuff. Methods to extend shelf life; Packaging of perishables and processed foods; Special problems in packaging of food stuff. Package standards and regulation; Shrink packaging; Aseptic packaging.
References:	 Crosby NT. 1981. Food Packaging Materials. Applied Science Publ. Mahadeviah M & Gowramma RV. 1996. Food Packaging Materials. Tata McGraw Hill. Palling SJ. (Ed). 1980. Developments in Food Packaging. Applied Science Publ. Sacharow S & Grittin RC. 1980. Principles of Food Packaging. AVI Publ
Course Outcomes	At the end of the course, learners will be able

			 CO1: Student's capability to develop packages for all kinds of food products as per requirement of food industries. CO2: To acquaint the students with various aspects of advanced food packaging methods and technology for perishable and processed foods. 												inced
Monning	hotm	CO3: Student's capability to develop knowledge of package standard and regulations used in food industry													
Mapping CO			.US, I	<u>US a</u>	inu r	308	PO							PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															

Course code	PFE - 511
Course title	Food Quality and Safety
Corse credit	3 (2 + 1)
Objective of Course	 To acquaint and equip the students with the need of quality control and scope for food toxicology. To acquaint and equip the students with the latest standards to maintain food quality and safety.
Course Content	Food safety: Need for quality control and safety, strategy and criteria, microbiological criteria for safety and quality, scope of food toxicology, toxic potential and food toxicants, biological and chemical contaminants. Food additives and derived substances, factors affecting toxicity, designing safety in products and processes, intrinsic factors, establishing a safe raw material supply, safe and achievable shelf life. Process equipment and machinery auditing, consideration of risk, environmental consideration, mechanical quality control. Personnel hygienic standards, preventative pest control, cleaning and disinfesting system, biological factors underlying food safety. Preservation and stability, contaminants of processed foods, adulteration, prevention and control, FPO, PFA, Codex, GMP, BIS and HACCP; Practices, principles, standards, specifications, application establishment and implementation; HACCP and quality management system. Microbiological examination of food, hazard analysis, premises design, HACCP project plan; CCP, CCP Decision tree, HACCP control chart. HACCP case studies; Survey, BIS, FPO, Codex standards and specifications. Visits to food industries to study
Deferrer	the various quality and safety aspects adopted.
References:	 Chesworth N. 1997. Food Hygiene Auditing. Blackie Academic Professional, Chapman & Hall. David A Shapton & Norah F Shapton. 1991. Principles and

				 Practices for the Safe Processing of Foods. Butterworth-Heinemann. Jacob M 2004. Safe Food Handling. CBS. Jose M Concon. 1988. Food Toxicology, Part A. Principles and Concepts, Part B. Contaminants and Additives. Marcel Dekker. Sara Mortimore & Carol Wallace. 1997. HACCP - A 											
				Practical Approach. Chapman & Hall											
Course Ou				At the CO1 ensu CO2 stanc CO2 plant deve	e end : Sture foo : To lards. 3: To t hyg lopm	l of the ident od sat acq b acq iene' ent o	he co 's ca fety i uaint uaint and	urse, pabil n foo the the HAO	learn ity to d sup stude stude	ers wil meas pply cha ents wi ents wi technic	l be ab ure fo ain. ith vai	ole od qua rious fo ality co sed in	ood	proce and	essing food
Mapping l	betwo	een (Cos, I	'Os a	ind P	SOs	DO							DCO	
CO	1	2	3	4	5	6	PO 7	8	9	10	11	12	1	PSO 2	-
CO1	1	4	3	4	3	6	/	0	9	10	11	12		4	3
CO1 CO2															
CO2 CO3															

Course code	PFE -512
Course title	Farm Structures and Environment Control
Corse credit	2(1+1)
Objective of Course	 To acquaint and equip the students with the different types of farm structures and techniques, to control atmospheric parameters and to create favorable environment in the agricultural structures. To impart knowledge on low cost farm structures, design and constructions. To impart knowledge on need of control atmospheric parameters (heating, ventilating and exhaust system) to create favorable environment in the farm structures To enable the students to acquire knowledge of energy efficient environmental control practices along with their standard codes and standard used.
Course Content	Thermodynamic properties of moist air, psychorometric chart and computer programmes for thermodynamic properties. Farm structures, their design, constructional details and design of low cost structures. Heating, ventilating and exhaust systems, air distribution and air cleaning, combustion of fuels and equipment. Drying and dehumidification system, air-water contact operations and evaporation, process and product air conditioning, energy efficient environmental control practices. Instruments and measurements; codes and standards.
References:	• Albright LD. 1990. Environmental Control for Animals and

				P	ants.	ASA	AE T	Textb	ooks.	Esma	y ML	& Di	xon	JE.	1986.
											•	l Build			
					orp.					U			U		
				• Gaudy AF & Gaudy ET. 1988. Elements of Bioenvironmental											
				Engineering. Engineering Press.											
				• Moore FF. 1994.Environmental Control Systems: Heating,											
				Cooling, Lighting. Chapman & Hall.											
								-	-			nmenta	l En	gine	ering.
				• Threlkeld JL. 1970. Thermal Environmental Engineering. Prentice Hall											
Course Ou	tcom	hes At the end of the course, learners will be able													
				CO1: Student's capability to design new farm structures and											
										thin it.					
				CO ₂	: То	o ac	quair	nt th	e st	udents	with	vario	us a	spect	ts of
				environmental control within the farm structures.											
				CO3: Graps the ramifications of the farm structural solution											
				within around and awareness for sustainable development											
				CO4 : Design solutions for engineering aspects of farm structures											
				and	envir	onme	ental	part	to f	ulfil th	e requ	iiremer	nts, g	giving	g due
				rega	ds to	publ	ic he	alth a	and sa	afety ar	nd envi	ronme	ntal f	actor	s.
Mapping l	betwo	een (Cos, I	POs a	nd P	SOs									
CO							PO							PSO)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1										-					
CO2										-					
CO3										-					
CO4										-					

Course code	PFE – 513
Course title	Storage Engineering and Handling of Agricultural Products
Corse credit	3 (2 + 1)
Objective of Course	 To acquaint and equip the students with the safe storage of food materials. To demonstrate design of storage structures To explain design of different material handling equipment
	used in the industries.
Course Content	Storage of grains, biochemical changes during storage, production, distribution and storage capacity estimate models, storage capacity models, ecology, storage factors affecting losses, storage requirements. Bag and bulk storage, godowns, bins and silos, rat proof godowns and rodent control, method of stacking, preventive method, bio-engineering properties of stored products, function, structural and thermal design of structures, aeration system. Grain markets, cold storage, controlled and modified atmosphere storage, effects of nitrogen, oxygen, and carbon dioxide on storage of durable and perishable commodities, irradiation, storage of dehydrated products, food spoilage and preservation, BIS standards. Physical factors influencing flow characteristics, mechanics of bulk solids, flow

	through screw, r principles materials Quality structures maintena modified and quali	oller, s of f evalu s, conce, s atmo	pne Iuidiz ation old static ospher	of stora press	ic c n, rec store ge, sure c rage	onveyo eent ad ed pro load lrop, ez system	ors ar vances oducts estim xperim	nd buc s in ha , designation, nent on	ket ndlin gn o con cont	elevang of of sto nstructrolled	tors, food prage tion, l and	
References:												
Course Outcomes	Technology. Batra Book Service. tcomes At the end of the course, learners will be able CO1: to understand and undertake mechanical handling of food as per requirement of food industries. CO2: to understand storage devices and systems for safe storage of food for longer period of time.											
Mapping between Cos, I	POs and I	PSOs										
СО	, ,	1	PO	1	1	1	1			PSO		
1 2 3	4 5	6	7	8	9	10	11	12	1	2	3	
CO1						-					-	
CO2									1			

Course code	PFE-514
Course title	Seed Drying, Processing and Storage
Corse credit	3 (2 + 1)
Objective of Course	1. To acquaint and equip the students with seed processing.
	2. To acquaint and equip the students with design features of the
	equipment used in seed processing

Course Content	Processin principles characteri grading, packaging debreader grader, sp and colou their oper of their of plant desi drying, in significan seed moi scientific temperatu operation practices, methods pact, desi building. Study of cleaners, pneumatic scale etc. seed proc operation	and stics conv g and c, hull becific ir sor ration capaci- ign a gn. S ntrodu- ce of sture seed ire /clear mat and r ign f vari scalj c sep and t cessin	l imp of diveying stor er, ve c grav ter, se and la eed c uction mois , thu stor an alines erials machi eature fous pers, parato heir p	porta iffere g, e age, elvet vity s eed t main eed ayout frying n to sture mb age, ad s and ines es of seed air ors, s perfo ant a	nce ent ur ent ur levat seed separa reater ntena qualif , eco g prir diffe equil rule type hu f se d her used, f med scre- eed rman und i	of see nit ope ing, of proces rator, s ator, in r, weig nce, in ty mai nomy nciples erent t ibrium and it s of s midity yed st metho dium a cessing en cle treatin ce eva ts eco	ed pro rations drying, ssing r piral se dent cy hing a stallat ntenan and se astallat ntenan and se and m ypes , meth s relev torage , ores, packa od of s and lo g equij caners, g equi luation nomics	cessing such treat: nachine eparato ylinder, nd bag ion and ce duri afety c ethods, of heat od of m vance. structi manage ging, stacking ng terr oments grade pment, desig	s. Pe as pring, es lil r, cle disc ging l det ing l onsid ted naint Imp ures emer ging- seed g and s suc rs, f bag n an /sis	erform reclea blen ke sca eaner- e separ mach ermin proces deratio deratio dera	hance ning, ding, alper, cum- rator, nines, ation sing, on in seed cyers, g safe educe and iples, ment r im- orage pre- and sures, out of st of		
References:	temperatu • Gregg								stora	aonny	·		
	 Gregg et al. 1970. Seed Processing. NSC. Henderson S and Perry S M. 1976. Agricultural Pro Engineering. 5th Ed. AVI Publisher. Sahay KM and Singh KK. 1994. Unit Operation 												
Course Outcomes								r House Ne	e				
			f the course, learners will be able nt's capability to understand seed processing as per										
	1	uirement of seed industries.											
	CO2 : Student's capability to understand storage requirement of seed maintaining its vigor and viability, suitable equipment for												
	seed processing.												
Mapping between Cos,	POs and PSOs												
CO 1 2 3	4 5	6	PO 7	8	9	10	11	12	1	PSO 2	3		
CO1 1 2 5			,	0	,	-	11	14			5		
CO2	+ +												

	Course code	PFE-515
--	-------------	---------

Course title	BIOCHEMICAL AND PROCESS ENGINEERING											
Corse credit	3(2+1)											
Objective of Course	1. To acquaint and equip the students with the basic principles of biochemical process like fermentation, bio reactors and enzyme reactors.											
	2. To acquaint and equip the students with the basic principles of process engineering like energy balance, flow properties etc.											
	3. To acquaint and equip the students with knowledge principles of recovery of fermented products in bio-process and their instrumentation.											
Course Content	Applications of engineering principles; mass and energy balance fluid flow principles, unit operations of process engineering Fundamentals of growth kinetics, maintenance energy and yiel concepts, principles of media sterilization, media formulations of industrial Fermentation. Aerobic and agitated rheology of fermentative fluids, design and scale-up of bioreactors, enzym reactors. Principles of recovery of fermented products in bio processing, instrumentation, transport phenomenon. Kinetics of one substitute reactions, kinetics of growth in batc cultures, design consideration for bioreactors, media preparation and sterilization, microprocessor based monitoring of bioproces											
References:	parameters.											
Kererences.	 Coulson JM & Richadson JF. 1999. Chemical Engineering. Vols. II, IV. The Pergamon Press. Treybal RE. 1981. Mass Transfer Operations. 3rd Ed. Harper & Row. Brennan JG, Butters JR, Cavell ND & Lilly AEI. 1990. Food Engineering Operations. Elsevier. Greanoplis J Christie. 1999. Transport Process and Unit Operation. Allyn & Bacon 											
Course Outcomes	At the end of the course, learners will be able											
Mapping between Cos,												
CO	PO PSO											
CO 1 2 3												
CO 1 2 3 CO1	PO PSO 4 5 6 7 8 9 10 11 12 1 2 3 - - - - - - - - -											
CO 1 2 3 CO1	PO PSO											
CO 1 2 3 CO1	PO PSO 4 5 6 7 8 9 10 11 12 1 2 3 - - - - - - - - -											

Course coo	de			PFE	-591											
Course titl	le			Indu	istry	/ Ins	titute	e Tra	ining	5						
Corse cred	lit			$\frac{1 (0+1)}{1.}$ To acquaint and equip the students in relevant food												
Objective	of Co	ourse	e	p	roce	ssing	indu	stry.				ts in sentatio		vant	food	
Course Cor	ntent			In-plant training in the relevant food industry during processing operation of the plant to study the actual working of the equipment and various unit operations. The evaluation will be based on the written report of the student and the comments of the factory managers. The duration of training shall be three weeks. The student shall be required to do training in the institute other than the institute in which he/she is enrolled											f the ill be nts of three	
References	:			-												
Course Out	tcom	es		CO1 er CO2	: Stu iviroi	udent nmen o apj	's ca .t.	pabil	ity to		me fa	ole miliar ge in				
Mapping b	oetw	een (Cos, I	POs a	nd P	SOs										
CO		-			-	_	PO		-		-			PSO)	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1																
CO2																

Processing and Food Engineering

(PG as per Fifth Deans)

Ph. D. (Agril. Engg.)

Course code			PFE	- 60	1									
Course title			Textural and Rheological Characteristics of Food Materials 3 (3+0)											
Corse credit			3 (3-	-0)										
Objective of Co	urse))	 To acquaint and equip the students with advances in measurement of textural characteristics affecting the food quality. To acquaint and equip the students with advances in measurement of rheological characteristics affecting the food quality To acquaint and equip the students with advances in textural rheological and viscoelastic characteristics of foods. 											
Course Content			Text rheo meas textu Rheo appli non-	ure c logy. surem ire a ologic icatio Newt	lassif Prinents, and cal prinents on alcontation toniation	icatio incipi visco coper ong v n flui ic ch	on. Ro es cosity sity ties o vith p ds. F narac	elatio and mea f foo bipe 1 Recen	n of fo practi asuren sureme ds. Ma ine de t adva	ood tex ces nents. ents athema sign a nces i	ture with of ob Senso and th atical n nd pun n textu	ith stri jectiv ry n eir c nodel np se ural, 1	ructur re te nethoo correla s and electio rheolo	exture ds of ation. their on for ogical
References:			 Bourne MC. 2002. Food Texture and Viscosity: Concept and Measurement. Academic Press Deman JM. et al. 1976. Rheology and Texture in Food Quality. AVI Publ. Journal of Food Science and Technology Mohsanin NN.1989. Physical Properties of Plant and Animal Material. Vol. I, II. Gordon and Breach Science Publ. Steffe JF. 1992. Rheology and Texture in Food Quality. AVI Publ 										Food ogy nimal	
Course Outcome	25		 At the end of the course, learners will be able; CO1: Student's capability to determine textural properties of food materials and their application in control of food processing operations. CO2: Student's capability to determine rheological properties of food materials and their application in control of food processing operations. CO3: To acquaint the students with advancement in textural, rheological and viscoelastic characteristics of foods and their application in control of foods and their application in control of foods. 										essing ies of essing tural,	
Mapping betwe	en (Cos, I							_	Ŭ	_			
CO		/				PO							PSO)
1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1									-					
CO2											-		_	

CO3	
~ .	
Course code	PFE -602
Course title	Advances in Food Processing
Corse credit	3(3+0)
Objective of Course	1. To acquaint and equip the students with the modern and latest techniques of food engineering.
	2. To acquaint the students with low temperature preservation,
	hurdle technology in food processing
	3. To acquaint and equip the students with advanced
	technologies viz. microwave, high pressure, pulse electric
	filed and extrusion in food processing applications.
Course Content	Preservation of foods: Physical and chemical methods, microbiological aspects, thermo bacteriology, process calculation and selection. Low temperature preservation - cooling and cold storage - freeze concentration and membrane separation process - hurdle technology -principles and applications - food irradiation - advantages and applications, microwave processing - interaction with food materials- microwave equipment - hydrostatic pressure treatment of food -
	equipment, processing and effect on microorganisms Application of heat energy and ultrasound - inactivation of microorganisms and enzymes -electrical resistance heating of food - heat generation, ohmic heater, heating models - pulsed electric field preservation- principles and application - influence on microorganisms and food ingredients - decontamination of microorganisms by surface treatment. Extrusion cooking - recent developments, methods, equipment, design criteria of extruders
References:	 Heldman R Dennis and Lund B Daryl. 1992. Hand Book of Food Engineering.Marcel Dekker. Goldblith SA, Rey I & Rothmayr WW. 1975. Freeze Drying and Advanced Food Technology. Academic Press. Gould GW (Ed.).1996.New Methods of Food Preservation. Blackie Academic & Professional Leniger HA & Beverloo WA. 1975. Food Process Engineering. D. Reidel Publishing Co. Rao MA & Rizvi SSH 1986. Engineering Properties of Foods. Marcel Dekker. Ronald Jowitt. 1984. Extrusion Cooking Technology. Elsevier
Course Outcomes	At the end of the course, learners will be able; CO1: Student's capability to understand advanced food processing applications as per requirement of food industries. CO2: Student's capability to preserve food products using advance techniques as per requirement of food industries. CO3: To acquaint the students with recent technologies in food processing.
Mapping between Cos,	

CO		РО											PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															

Course code	PFE -603
Course title	Mathematical Modeling in Food Processing
Corse credit	3 (3+0)
Objective of Course	1. To acquaint and equip the students with the mathematical
	techniques.
	2. To acquaint and equip the students with the application of
	mathematics in food processing applications.
Course Content	An overview of the modeling process. Introduction to
	mathematical, correlative and explanatory models. Formulation,
	idealization and simplification of the problems. Probability
	models, series and linear mathematical approximation, dynamic
	and interacting dynamic processes. Applications of mathematical
	modelling techniques to food processing operations like
	parboiling, convective drying, pasteurization, dehydration, shelf-
	life prediction, fermentation, aseptic processing, moisture
	diffusion, deep fat drying, microwave processing, infrared
	heating and ohmic heating. Stochastic finite element analysis of
	thermal food processes. Neural networks approach to modelling
	food processing operations.
References:	• Bailey NTJ, Sendov B & Tsanev R.1974. Mathematical
	Models in Biology and Medicine. Elsevier.
	• Fischer M, Scholten HJ & Unwin D. 1996. Spatial Analytical
	Perspectives on GIS. Taylor & Francis.
	• Fish NM & Fox RI. 1989. Computer Application in
	Fermentation Technology: Modelling and Control of
	Biotechnological Processes. Elsevier.
	Getz WM.1979. Mathematical Modeling in Biology
	Processes. Elsevier.
	Gold HJ.1977.Mathematical Modelling of Biological
	Systems - An Introductory Guidebook. John Wiley & Sons.
	• Hunt DR.1986. Enginering Models for Agricultural
	Production. The AVI Publ.
	• Kapur JN.1989. Mathematical Modeling. Wiley Eastern.
	• Koeing HE, Tokad Y, Kesacan HK & Hedgers HG. 1967.
	Analysis of Discrete Physical Systems. Mc Graw Hill.
	• Meyer JW. 2004. Concepts of Mathematical Modeling. Mc
	Graw Hill.
	• Peart RM & Curry RB.1998.Agricultural Systems,
	Modelling and Simulation. Marcel Dekker.
	• Tijms HC. 1984. Modelling & Analysis. A Congrtational
	Approach. Wiley Publ.
	• Ver Planck & Teare BR 1954.General Engineering Analysis

					An Sons	Intro	ducti	on to) Pro	fession	nal Me	thods.	John	Wil	ey &
Course Ou	itcom	es		At th	ne eno	d of t	he co	urse,	learn	ers wil	ll be ab	ole;			
Mapping	betwo	een (CO1: Student's capability to develop models for food pro operations. CO2: Student's capability to develop models for prediction control of operations 									L	U	
CO				PO PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1										-					
CO2										-					

Course code	PFE 604
Course title	Advances In Drying Of Food Materials
Corse credit	3 (2 + 1)
Objective of Course	 To acquaint and equip the students with the latest technologies of dehydration of food products. To study the various types of dryers and design features of different dryers.
Course Content	Importance of drying, principles of drying, moisture determination, equilibrium moisture content, determination of EMC, methods and isotherm models, psychrometry, psychrometric terms, construction and use of psychrometric charts. Air flow and resistance, principles and equipments for air movement and heating, drying methods and theory of drying, driers, classification and other allied equipment, thin layer drying of cereal grains, deep bed and continuous flow drying, drying models. Heat requirements and thermal efficiency of drying system, aeration, tempering and dehydration, operation of driers and their controls, selection of driers, performance testing of grain driers, drying characteristics of cereals, pulses and oilseeds, microwave drying, radio frequency drying and tunnel drying, principles and equipment. Drying of liquid foods, spray drying, drum drying, freeze drying, foam mat drying, heat pump drying, osmotic dehydration; Principles, methods, construction and adjustments, selection of dryers, heat utilization factor and thermal efficiency
References:	 Bala BK. 1998. Drying and Storage of Cereal Grains. Oxford & IBH. Brooker DB, Bakker Arkema FW & Hall CW. 1974. Drying Cereal Grains. The AVI Publ. Chakraverty A & De DS. 1999. Post-harvest Technology of Cereals, Pulses and Oilseeds. Oxford & IBH. Hall CW. 1970. Drying of Farm Crops. Lyall Book Depot. Tadensz Kudra & Majumdar AS. 2002. Advanced Drying Technologies. Marcel Dekker. Wallace B Van Arsdel & Michael J Copley. 1963. Food

				D	ehyd	ratior	n. AV	'I Puł	ol						
Course Ou	tcom	es		At th	ne en	d of t	he co	ourse,	learr	ners wi	ll be al	ole			
		CO1: To acquaint the students with drying principles and												and	
		moisture determination in agricultural and food products.													
	CO2: Identify various methods for determining moistur												isture		
		content, EMC and drying process.													
		CO3: To explain the different principles and equipments for air												or air	
						nt and				-	-	•	-		
		CO4: Explain the heat requirements and thermal efficiency of													
		drying system.													
				CO	5: Ez	xplaiı	n the	e dry	ing e	equipn	nents f	for liqu	uid f	foods	with
				prine	ciples	s and	meth	ods.							
Mapping	betw	een (Cos, I	POs a	and H	PSOs									
CO							PO							PSO)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1										-		-			
CO2										-		-			
CO3										-		-			
CO4										-		-			

Course code	PFE 605									
Course title	Agricultural Waste And By-Products Utilization									
Corse credit	3 (2 + 1)									
Objective of Course	1. To acquaint and equip the students with the proper									
	utilization of agricultural waste and by-products.									
	2. To acquaint students with development of value added									
	products from wastes.									
Course Content	Generation of by-products, agricultural and agro industrial by-									
	products/wastes, properties, on site handling, storage and									
	processing. Collection of wastes, utilization pattern as fuel,									
	agricultural waste fired furnaces: Mechanism, construction and									
	efficiency, suitability of wastes as fuel, fuel briquettes,									
	briquetting process, equipment, factors affecting briquetting.									
	Utilization of wastes for paper production, production of particle									
	board, utilization, byproducts from rice mill, rice husk, rice bran,									
	utilisation. Thermo-chemical conversions, densification,									
	combustion and gasification, extraction, biological conversions,									
	anaerobic digestion, biochemical digestion process, digestion									
	systems, energy from anaerobic digestion, cellulose degradation,									
	fermentation process.									
References:	• ASAE Standards. 1984. Manure Production and									
	Characteristics.									
	• Bor S Luh (Ed.). 1980. Rice: Production and Utilization. AVI									
	Publ.									

Course Outcomes	Oxfor David Evalue Dona and V Sriva Brique USD Hand Wilfr At the e CO1: S manager CO2: I drainage CO3: I the treat CO4: S various	H. averty ologic d & II l C V ation, ld L K /astes stava etting A 19 book. ed A C nd of t Summa nent. Estima fo exp produc Explain ion ons.	A. es for BH. Wilso Tech lass d . Ann PK, 1 and U 92. USD. Cote.1 he co arize te th system plain cts. n the and	1989 Utili on. 1 nolog & Em . Arb Mahe Jtiliz Agri A. <u>983.</u> ourse, the in ne ra vari n. the u	2. Bio isatio 981. gies. (nert H or. So swar: ation. icultu <u>Bion</u> learn mport te of ous c utiliza	otechno n of B Waste Oxforce I Geor i RC Jain I ral V mass U ters wittence of Sewa charact ation of nemica	ology a iomass e Man l. ge 1981 Publ. & Ohja Bros. Waste <u>tilizatio</u> Il be ab of sanit age flo teristics	and oth / Agric agemen I. Fuels a TP. Mana <u>m. Pler</u> ation a ow and s of se es for ersions	her A cultur nt - s fror 1995 gema nd w d sto wage prep	Alterr ral W Plar n Bio . Bio ent <u>Press</u> raste orm e and oaratio biolo	native astes. nning, omass omass Field water plan on of ation, ogical
CO			PO							PSO)
1 2 3	4 5	6	7	8	9	10	11	12	1	2	3
CO1						-		-			
CO2						-		-			
CO3						-		-			
CO4						-		-			
CO5						-		-			

Department of Irrigation and Drainage Engineering - M.Tech and PhD(Old Course)

Course code	IDE 501
Course title	IRRIGATION PLANNING AND MANAGEMENT
Corse credit	3 (2+1)
Objective of Course	Understanding of irrigation technologies and systems, able to develop irrigation schedule and canal water distribution and operation, assessment and appraisal for water availability in command area, able to evaluate performance of irrigation projects based on water delivery.
Course Content	Basic terminology used in planning of irrigation projects, duty of water, its determination and factors affecting it. Methods of improving duty of canal water.
	Canal scheduling, assessment and appraisal of water availability in command areas, preliminary planning and investigation in irrigation project formulation.
	Socio economic aspects of irrigation management, Water management problems in command areas and their possible remedies.
	Multi objective command area planning for the better management of irrigation water, conjunctive use of canal and groundwater.
	Root zone water balance, water allocation, real time irrigation scheduling, performance appraisal of irrigation projects- equity, adequacy. Design of on farm water distribution network.
References:	Doorenbos, J. and W. O. Pruitt. (1977). Guidelines for Predicting Crop Water requirement, Irrigation and Drainage Paper No. 24, FAO, UN, Rome.
	Michael, A. M. (2006) Irrigation-Theory and Practices, Vikas Publishing House Pvt. Ltd., New Delhi. 799 pp.
	Annonymous, (1982), Organization, Operation and Maintenance of Irrigation Schemes, Irrigation and Drainage Paper No. 40, FAO, UN, Rome. 189 pp.
	T. B. S. Rajput and A. M. Michal, (1990). Scheduling of canal

Course Outcomes	 deliveries. Application of the Integrated Canal Scheduling Model, Irrigation and Power Journal 47(1): 17-39. L. Kalu, G. N. Paudyal and A. Dasgupta, (1995). Equity and Efficiency issues in Irrigation Water Distribution. Journal of Agric. Water Management, 28(4): 335-348. At the end of the course, learners will be able CO1: Understand basic terminology used in irrigation project planning, including duty of water, factors affecting it, and methods for improvement. CO2: Analyze canal scheduling, assess water availability in command areas, and apply preliminary planning and 									
Mapping between COs w										
CO PO	PSO									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4 5 6 7 8 9 10 11 12 1 2 3									
CO1										
CO2										
CO3										
CO4										
CO5										

Course code	IDE 502
Course title	DESIGN OF SURFACE IRRIGATION SYSTEMS
Corse credit	3 (2+1)
Objective of Course	Selection of suitable method of surface irrigation based on land irritability and infiltration characteristics, design and evaluation of various surface irrigation methods, design optimum layout, conveyance network for efficient use water in surface irrigation system.
Course Content	Historical evidence of development and progress of farm irrigation systems
	Land irrigability, Theory of Infiltration and its measurement, Methods of irrigation-their selection and suitability
	Surface Irrigation Systems- Water advance, wetting, depletion and recession in surface irrigation
	Field data and performance measures of surface irrigation systems, evaluation and design of surface irrigation methods- border, basin and furrow method, surge irrigation and adaptability and design.
	Irrigation scheduling and equity in water distribution, optional layout of conveyance network-shortest route and minimum tree spanning tree approach.
References:	Michael, A.M. (2006). Irrigation Theory and Practice. Vikas Publ. New Delhi.
	Jensen, M.E. (Editor). (1983). Design and Operation of Farm Irrigation Systems, ASAE, Monograph No. 3. USA.
	Walker, W.R. and G.V. Skogerboe. (1987). Surface Irrigation: Theory and Practice Prentice-Hall Inc. New Jersey, USA
	James. L.G. (1988). Principles of Farm Irrigation System Design. John Wiley and Sons, New York, USA.
	Withers, Bruce and Vipond, Stanley. (1974). Irrigation: Design and Practice. B.T. Batsford Ltd., London.

Course Ou	itcom	es		At th	ne eno	d of t	he co	ourse,	learn	ers wi	ll be al	ole			
				CO1: Understand the historical development and progress of farm irrigation systems, analyzing their influence on agricultural advancements.											
				CO2: Analyze land irrigability based on soil characteristics and water resources, apply the theory of infiltration and its measurement techniques, and select and justify suitable irrigation methods for specific conditions.											
				CO3: Explain the principles of surface irrigation, including water advance, wetting patterns, depletion, and recession processes. Analyze field data and performance measures of various surface irrigation systems (border, basin, furrow).											
				basi	n, f	urrov	w),	inclu	ding	surg	•	tion m rigation outs.			order, dering
				CO5: Implement irrigation scheduling strategies and analyze equity in water distribution within irrigation systems. Design optimal conveyance networks using shortest route and minimum tree spanning tree approaches for efficient water delivery.											
Mapping b	betwe	en Co	Os w	ith P	Os an	d PS	Os								
Mapping	betw	een (Cos, I	POs a	and P	SOs									
CO PO PSO															
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	IDE 503
Course title	RECLAMATION OF IRRIGATED LANDS
Corse credit	3 (2+1)
Objective of Course	Able to identify the various types of problematic soils, develop competency for reclamation of problematic and water logged soils, understanding of leaching requirement, Hydraulic conductivity and design of drainage system.
Course Content	Causes of water logging and soil salinity in irrigated lands, Extent of water logging and soil salinity in arid and semi-arid lands, Field investigations of soil and water salinity components, Movement of water and salts.
	Control for seepage and leakage from canal network, Groundwater geology considerations, Quality of canal and ground water, Water balance, Salt balance,
	Use of amendments for reclamation or irrigated lands, leaching of salts.
	Disposal of drainage water, Reuse of drainage water. Sensor based drainage system.
References:	Ritzema, H.P. (Ed) (1994). Drainage Principles and Applications, Second Edition, International Institute for land Reclamation and Improvement; Wageningen. The Netherlands.
	Singh, R.V. (Ed) (1991), Drainage and Salinity Control, Himanshu Publication, Udaipur.
	Rao KVGK, Agrawal MC & Singh OP (1993), Reclamation and Management of Waterlogged Saline soils. CSSRI Karnal.
Course Outcomes	At the end of the course, learners will be able CO1: Analyze the causes and extent of waterlogging and soil salinity in irrigated lands, particularly in arid and semi-arid regions. Conduct field investigations to assess soil and water salinity levels and understand the movement of water and salts within the soil profile. CO2: Develop strategies for controlling seepage and leakage from canal networks, considering groundwater geology

 considerations and the quality of both canal and groundwater resources. Perform water and salt balance calculations to assess the current situation and design interventions. CO3: Evaluate the use of amendments for reclamation of saltaffected irrigated lands, including leaching techniques to remove excess salts and restore soil health. CO4: Design and implement drainage systems for effective waterlogging control, including the disposal of drainage water and potential for reuse. Analyze the feasibility and benefits of sensor-based drainage systems for improved efficiency and automation. CO5: Develop comprehensive management plans to address waterlogging and salinity issues in irrigated lands, integrating various control measures like canal seepage reduction, groundwater management, soil amendments, drainage systems, and water reuse strategies for sustainable irrigation practices. 					
Mapping between COs with POs and PSOs					

Mapping	between	Cos.	POs	and	PSOs
mapping	Detween	C0 5,	1 05	ana	1005

CO	PO	PO										PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	IDE 504
Course title	AGRICULTURAL DRAINAGE SYSTEMS
Corse credit	3 (2+1)
Objective of Course	To acquaint and equip with the importance and phenomenon of drainage system along with design consideration of surface and sub-surface drainage systems
Course Content	Theories and applications of surface and sub-surface drainage, steady state, unsteady state drainage equations for layered and non- layered soils, horizontal sub- surface drainage
	Principle and applications of Earnst, Glover Dumm, Kraijenhoff- van-de-leur equations
	Salt balance, leaching requirement and management practices under drained conditions.
	Design of different components of sub-surface drainage systems, theories of vertical drainage and multiple well point systems
	Disposal of drainage effluents, Management of drainage projects of water- logged and saline soils, case studies
References:	Battacharaya AK & Micheal AM. 2003. Land Drainage. Vikas Publ.
	Clande Ayres & Daniel Scoates A.E. 1989.Level Drainage and Reclamation. McGraw Hill.
	Luthin JN. 1978. Drainage Engineering. Wiley Eastern.
	Ritzema HP. (Ed.). 1994. Drainage Principles and Applications. ILRI. Roe CE 1966. Engineering for Agricultural Drainage. McGraw Hill.
Course Outcomes	At the end of the course, learners will be able CO1: Analyze the principles and applications of surface and subsurface drainage, including steady-state and unsteady-state drainage equations for layered and non-layered soils, with specific focus on horizontal subsurface drainage. CO2: Apply relevant drainage equations like Earnst, Glover Dumm, and Kraijenhoff-van-de-leur to solve drainage problems and design drainage systems effectively. CO3: Manage salt balance under drained conditions, determine leaching requirements, and implement appropriate management

Mapping between COs with POs and PSOs

СО	PO	РО												PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1																	
CO2																	
CO3																	
CO4 CO5																	
CO5																	

Course code	IDE 505
Course title	OPEN CHANNEL FLOW
Corse credit	3 (3+0)
Objective of Course	To acquaint and equip with the hydraulics of surface water flow phenomenon in open channels
Course Content	Open channel and their properties, energy and momentum, critical flow computation and application.
	Uniform flow; gradually varied flow theory and analysis, methods of computation.
	Practical problems such as design of transitions, flow passing Islands etc. spatially varied flow, rapidly varied flow.
	Hydraulic jump and its use as energy dissipator, flow through channel of non-linear alignment and flow through non-prismatic channel sections.
	Unsteady flow, gradually varied unsteady flow and rapidly varied unsteady flow.
References:	Chaudhry MH. 1993. Open Channel Flow. Prentice Hall. Chow VT. 1959. Open Channel Hydraulics. Mc-Graw Hill. Henederson FM. 1966. Open Channel Flow. MacMillan.
Course Outcomes	At the end of the course, learners will be able
	CO1: Analyze the properties of open channels, including energy, momentum, critical flow, and apply these principles to solve related problems.
	CO2: Understand and apply the theory of uniform flow in open channels, analyze gradually varied flow, and utilize various computational methods for different scenarios.
	CO3: Design transitions in open channels, solve flow problems involving islands and other obstructions, and analyze spatially and rapidly varied flow conditions.
	CO4: Understand the principles of hydraulic jump formation and apply it as an energy dissipator in open channel design. Analyze flow through non-linearly aligned and non-prismatic channels.

				and	rapi	dly	varie	d, ar	nd ap		elevan	annels t prin g.		0	•
Mapping															
Mapping	g betw	een	Cos,	POs a	and l	PSOs	5								
СО	PO												PS	0	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	IDE 506
Course title	GIS AND REMOTE SENSING FOR LAND AND WATER RESOURCE MANAGEMENT
Corse credit	3 (2+1)
Objective of Course	To acquaint and equip with the techniques of Remote Sensing and application of GIS for land and water resources management.
Course Content	Basic principles of remote sensing and sensors. Elements of photogrametry.
	Electromagnetic spectrum. Energy interaction with surface features, Aerial photo and satellite imagery. Photo and image interpretation.
	Principles of Geographical Information System tools, their types and capabilities, Advantages of GIS over conventional methods.
	Importance of ground truth establishment, GIS and remote sensing for land and water resources data collection, analysis and interpretation, Application of GIS in water and land resource development and management.
References:	De Mess MN. 2004. Fundamental of Geographic Information System. John Wiley & Sons.
	Lille Sand T & Kaiffer R.1987. Remote Sensing and Image Interpretation. John Wiley & Sons.
	Sabbins F.1987. Remote Sensing Principle and Interpretation. Freeman.
Course Outcomes	At the end of the course, learners will be able
	CO1: Understand the basic principles of remote sensing and sensors, including the elements of photogrammetry and the interaction of electromagnetic spectrum with surface features. Interpret aerial photographs and satellite imagery for various land and water resource applications.
	CO2: Master the principles of Geographic Information Systems (GIS) tools, their types and capabilities, and the advantages of GIS over conventional methods for data management and analysis. Appreciate the importance of establishing ground truth

				for a	ccura	ite da	ta in	terpre	tatio	n.					
	CO3: Utilize remote sensing and GIS technology for efficient land and water resources data collection, analysis, and interpretation. Extract meaningful information from various datasets and interpret them for resource management decisions.														
	 CO4: Apply GIS in various aspects of water and land resource development and management, including irrigation planning, watershed management, drought monitoring, and land use mapping. Leverage GIS capabilities to analyze spatial relationships and patterns for informed decision-making. CO5: Integrate remote sensing and GIS for comprehensive resource assessment and monitoring. Develop and implement 										nning, l use patial				
				effec	tive	strat	egies	s for	sust	ainable	e land	l and ologies.	wate	-	
Mapping be	etwee	en CO	Os wi	ith PC	Os an	d PS	Os								
Mapping b	oetwo	een (Cos, I	POs a	nd P	SOs									
СО	PO										_	_	PSC	0	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2									-	-	_				

CO3 CO4 CO5

Course code	IDE 507
Course title	WATER RESOURCES SYSTEM ENGINEERING
Corse credit	3 (3+0)
Objective of Course	Able to identify objective function and components in water resource planning problems, able to formulate and solve various mathematical programming models of water resource system, able to develop conjunctive use and crop production function optimization models.
Course Content	Concepts of significance of optimization in water resources, objective function, deterministic and stochastic inputs.
	Mathematical programming technique, linear programming and its extension: gradient method, simplex method, non-linear programming classical optimization.
	Geometric programming and dynamic programming, application of optimization techniques for water resources.
	Development and management including conjunctive use, crop production functions and irrigation optimization.
References:	Larry WM. (1996) Water Resources Handbook. Mc-Graw-Hill.
	Loucks DP et al. (1981). Water Resources System Planning and Analysis Prentice Hall.
	Rao SS. (1978) Optimization Theory and Application. Wiley Eastern.
	Wallander WW, BOS M (1990) Water resource system Planning & Management.
Course Outcomes	At the end of the course, learners will be able
	CO1: Understand the significance of optimization in water resources management, including the concepts of objective functions, deterministic and stochastic input considerations.
	CO2: Apply mathematical programming techniques, particularly linear programming and its extensions (gradient method, simplex method), for solving water resources planning and management problems.
	CO3: Analyze and solve non-linear optimization problems in

water resources using classical optimization methods, geometric programming, and dynamic programming techniques. CO4: Develop and implement optimization models for various water resources management applications, including conjunctive use of surface and groundwater, crop production functions, and irrigation optimization. CO5: Apply optimization techniques to effectively manage water resources, considering sustainability, efficiency, and decision-making under uncertainty. Mapping between COs with POs and PSOs Mapping between Cos, POs and PSOs CO PO PSO 2 3 4 5 7 9 10 1 6 8 11 12 1 2 3 CO1 **CO2 CO3 CO4**

CO5

Course code	IDE 508
Course title	IRRIGATION ECONOMICS PLANNING AND MANAGEMENT
Corse credit	3 (2+1)
Objective of Course	Able to estimate the cost benefit analysis, pricing and investment criteria on irrigation project evaluation and finding their problems, to impart the knowledge of various public and government policy on regulation and allocation of irrigation water.
Course Content	Criteria for investment in irrigation projects. Economics analysis of irrigation projects, cost benefit analysis, pricing and investment criteria on irrigation project evaluation, social benefits, problems and causes of under-utilization.
	Impact of public policies on regulation and allocation of irrigation water. Relative economic efficiency of alternative irrigation water management models irrigation system improvement by simulation and optimization.
	Economic and social benefits of irrigation projects after institutional and legal aspects in the use of irrigation water. Technological changes and irrigation water use efficiency.Methods and approaches to water pricing.
	Indian agriculture, main problems, population, government policies, systems, organizing agriculture production, socio- economic survey, importance of such survey in planning, implementation and evaluation of project performance.
	Farm Management- definition, Importance, scope, relation with other sciences and its characteristics. Role of farm management principles in decision making for irrigated agriculture.
	Socio-economic survey:- Data set and data point. Statistics main division and nature of statistics, planning of socio-economic survey.
	Collection of data:- Primary and secondary data, questionnaires & schedules sampling, editing and scurting of secondary data, classification and tabulation and analysis of data

References:	James, Douglas and Lee. Rober R-Economics of Water Resource Planning. Tata Mcgraw-Hill Publication Company Ltd., Bombay, New Delhi.
	Sharma, V.K. (1985) Water Resource Planning and management. Himalaya Publication House, New Delhi.
	Management of Water Project-Decision making and investment appraisal. Oxford Publication Co.
	Heady, Early O.R. Hexem, Rogrew Water Production Functions for irrigated Agriculture.
	Agarwal, A. N. Indian Economic Problems of Development and Planning.
	Joshi, S.S. and T.R. Kapoor, (2001), Fundamentals of Farm Business management. Kalyani Publishers, Ludhiyana.
Course Outcomes	At the end of the course, learners will be able
	CO1: Analyze investment criteria for irrigation projects, applying cost-benefit analysis, pricing strategies, and project evaluation methods. Identify social benefits and address causes of under-utilization.
	CO2: Evaluate the impact of public policies on water regulation and allocation. Compare the economic efficiency of alternative irrigation models and implement optimization techniques for improved water use efficiency.
	CO3: Assess the economic and social benefits of irrigation projects, considering institutional and legal aspects of water use. Analyze technological changes and their impact on irrigation water use efficiency.
	CO4: Understand the economic and social context of Indian agriculture, including population trends, government policies, and agricultural production systems. Conduct socio-economic surveys to inform planning, implementation, and evaluation of irrigation projects.
	CO5: Apply farm management principles for decision-making in irrigated agriculture, considering data analysis, statistical

										urveys tability		risk	asse	ssmen	t to
Mapping Mappin															
CO	PO)											PS	0	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	IDE 509
Course title	WATER CONVEYANCE AND DISTRIBUTION
Corse credit	3 (2+1)
Objective of Course	To develop the common understanding of different conveyance structure in canal irrigation network, able to infuse the knowledge about different types of channel flow and their behavior, able to gain the knowledge of appraisal of flow control and distribution structures.
Course Content	Channel characteristics, Prismatic and non-prismatic channel, Steady, unsteady, uniform and non-uniform flow
	Dimension-less representative parameters of flow behavior, Energy and momentum in open channel flow.
	Critical uniform, gradually varied rapidly varied and spatially varied flows and their computations
	Energy dissipation, Flow control structures, Flow measurement, Theories and methods of open channel design
	Water conveyance through pipes – Design & evaluation. Methods of Seepage estimation and control measures – Lining Material
References:	Chaudhry M.H. (1993). Open channel Flow. Prentice-Hall, NJ.
	Chow, Ven T. 1959. Open Channel Hydraulic, Mc-Graw Hill Book Co. New York. Kinori, B.Z. (1970). Manual of Surface Drainage Engineering. Elsevier Publ. Co. Amsterdam.
	Henderson, F.M. (1966). Open Channel Flow. Macmillan Co. New York.
	USBR. (1977). Water Measurement Manual. United States Bureau of Reclamation
Course Outcomes	At the end of the course, learners will be able
	CO1: Analyze the characteristics of open channels, differentiating between prismatic and non-prismatic geometries, and understand the concepts of steady, unsteady, uniform, and non-uniform flow.
	CO2: Utilize dimensionless parameters to represent the behavior

				 for flow analysis, and distinguish between critical uniform, gradually varied, rapidly varied, and spatially varied flows. CO3: Understand energy dissipation in open channels and the role of flow control structures in managing flow behavior. Utilize appropriate methods for open channel flow measurement and apply various theories and techniques for effective open channel design. CO4: Design and evaluate water conveyance systems through pipes, considering hydraulic principles and material characteristics. Analyze seepage problems in water conveyance systems and implement appropriate control measures, including lining materials. CO5: Integrate knowledge of open channel hydraulics and pipelines to solve real-world water management problems. Design and optimize water conveyance systems, taking into account hydraulic efficiency, environmental concerns, and cost-effectiveness. 											
Mapping	betwe	en C	Os w	ith P	Os an	d PS	Os								
Mapping	g betw	een (Cos,	POs a	and P	SOs									
СО	PO												PS	0	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2 CO3															
CO4															
CO5															
Course o	code			IDE 510											
Course t	title			DESIGN OF SPRINKLER AND MICRO IRRIGATION SYSTEM											
Corse cr	edit			3 (2+1)											
Objective of Course				Able to hydraulic design of drip as well as sprinkler irrigation											
Obiectiv	e of C	ours	e	Able	e to h	ydra	ulic 6	desig	n of	drip a	s well	as spr	inkle	r irris	gation
Objectiv	ve of C	ours	e			•				-		as spr on wa			
Objectiv	ve of C	ours	e	syste able	em fo to c	r par alcul	ticula late	ar are unifo	ea and rm d	d crop listribu	based	on wa	ter re er an	equire d pre	ement,
Objectiv	ve of C	ours	e	syste able distr	em fo to c ibutic	r par alcul	ticula late rougl	ar are unifo n ent	ea and rm d ire sy	d crop listribu ystem,	based tion of able t	on wa of wate to com	ter re er an pute	equire d pro the si	ement, essure ize of
Objectiv	ve of C	ours	e	syste able distr pipe	em fo to c ibutic for c	r par alcul on th onve	ticula late rougl ying	ar are unifo n ent	ea and rm d ire sy	d crop listribu ystem,	based tion of able t	on wa	ter re er an pute	equire d pro the si	ement, essure ize of
			e	syste able distr pipe irrig	em fo to c ibutic for c ation	r par alcul on th onve syste	ticula late rougl ying em.	ar are unifo n ent the f	ea and rm d ire sy low d	d crop listribu ystem, of wate	based tion of able t er in d	on wa of wate to com rip as v	ter re er an pute well a	equire id pro the sin as spr	ement, essure ize of inkler
Objectiv Course C			e	syste able distr pipe irrig Suita	em fo to c ibutic for c ation ability	r par alcul on th onve syste	ticula late rough ying em.	ar are unifo n ent the f	ea and rm d ire sy low d nd m	d crop listribu ystem, of wate	based tion of able t er in d	on wa of wate to com	ter re er an pute well a ms u	equire d pre the sin as spr nder I	ement, essure ize of inkler

	system
	Pipe flow analysis. Friction losses and pressure variation. Flow in nozzles and emitters
	Design & evaluation of sprinkler and micro irrigation systems in relation to source, soil, climate and topographical conditions.
	Selection of pipe size, pumps and power units, layout distribution, efficiency and economics
	Fertigation/ chemigation through sprinkler and micro irrigation systems.
References:	Michael, A.M. 2006. Irrigation Theory and Practice. Vikas Publ. New Delhi.
	Jensen, M.E. (Editor). (1983). Design and Operation of Farm Irrigation Systems, ASAE, Monograph No. 3. USA
	James. L.G. (1988). Principles of Farm Irrigation System Design. John Wiley and Sons, New York, USA.
	Withers, Bruce and Vipond, Stanley. (1974). Irrigation : Design and Practice. B.T. Batsford Ltd., London.
	Sivanappan, R.K. (1987). Sprinkler Irrigation. Oxford and IBH Publishing Co. New Delhi.
	Sivanappn, R.K. Padmakumari,O. and Kumar V.(1987). Drip Irrigation. Keeerthy Publishing House Coimbature.
	Keller, J. and Karmeli, D. (1975). Trickle Irrigation Design. Rainbird Sprinkler Manufacturing Corporation. Glendora, California, USA
	Karmeli, D., Peri, G. and Todes, M. (1985). Irrigation Systems: Design and Operation. Oxford University Press. Captown.
Course Outcomes	At the end of the course, learners will be able CO1: Analyze the suitability of sprinkler and micro irrigation systems under Indian conditions, considering factors like climate, soil type, topography, and water availability. CO2: Understand the basic hydraulic principles governing sprinkler and micro irrigation systems, including pipe flow analysis, friction losses, pressure variations, flow through nozzles and emitters, and pump selection. CO3: Design and evaluate sprinkler and micro irrigation systems based on source water characteristics, soil properties, climate

 conditions, and topographical features. Optimize system layout and distribution for efficient water delivery. CO4: Select appropriate pipe sizes, pumps, and power units based on hydraulic calculations and system requirements. Analyze the efficiency and economics of different sprinkler and micro irrigation options. CO5: Implement fertigation/chemigation techniques through sprinkler and micro irrigation systems, ensuring effective fertilizer and chemical application for improved crop yield and nutrient management.
Manning between COs with POs and PSOs

Mapping between COs with POs and PSOs

Mappin	g betw	veen	Iapping between Cos, POs and PSOs														
CO	PO												PSO				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1																	
CO2																	
CO3																	
CO4																	
CO5																	

Course code	IDE 511
Course title	CROP ENVIRONMENTAL ENGINEERING
Corse credit	2 (2+0)
Objective of Course	To develop the common understanding aerial and edaphic environments for plant growth, energy and mass transfer which help to maximizing the crop yield, to understanding the basic interface of soil and root and its characteristics, able to identify climatic changes on plant and how plan are response to environmental stresses, evapotranspiration.
Course Content	Aerial and edaphic environments for plant growth, energy and mass transfer in and above crop canopies.
	Climatic changes and plant response to environmental stresses, evapotranspiration models. Instrumentation and techniques for monitoring plant environments.
	Processes and aspects of growth and development, soil-root interface, root sink functions.
	Water movement in soil-plant atmosphere continuum, artificial environments and plant behavior. Water requirement of crops in controlled environment.
	Design and operation of controlled environment facilities and their instrumentation. Crop growth and yield modelling. Remote sensing based modelling.
References:	Ghildyal BP and Tripathy RP. 1987. Fundamental of Soil Physics. Wiley Eastern. Slatyor OP. 1967. Plant Water relationship. Academic Press.
	Gomtia N.K. & Tiwari K.N. 2008. Irrigation Scheduling & Crop water Stress using Remote sensing & GIS, Lamber Publication
Course Outcomes	At the end of the course, learners will be able CO1: Understand the interactions between aerial and edaphic environments, including energy and mass transfer processes in and above plant canopies. Analyze the impact of climatic changes and environmental stresses on plant growth and development. CO2: Apply evapotranspiration models for accurate water management in controlled environments. Utilize appropriate instrumentation and techniques to monitor various environmental parameters affecting plant growth.

CO3: Analyze the processes and aspects of plant growth and
development, focusing on the soil-root interface and root sink
functions. Understand the water movement within the soil-plant-
atmosphere continuum.
CO4: Design and operate controlled environment facilities,
including instrumentation and technology for optimal
environmental control. Evaluate the water requirements of
different crops under controlled conditions.
CO5: Develop and utilize crop growth and yield models,
including those based on remote sensing data, for predicting
plant performance and optimizing production in controlled
environments. Analyze the advantages and limitations of various
modeling approaches.
Manning between COs with POs and PSOs

Mapping between COs with POs and PSOs

Mapping between Cos, POs and PSOs

CO	PO	PO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO2 CO3 CO4															
CO5															

Course code	IDE 512
Course title	DESIGN OF PUMPS FOR IRRIGATION AND DRAINAGE
Corse credit	3 (2+1)
Objective of Course	Able to select the pump for desired discharge to be pumped from particular water source by developing pump characteristics curve, able to analyze the flow in different types of pump, able to design the pumping station for managing the irrigation and drainage system.
Course Content	 Design principles of the common types of pumps and well lifts, Influence of design parameters on the pump performance Matching of pumps with prime movers, Matching of pumps and prime movers with water source Non-conventional energy sources for pumping, Assessment of wind energy and design of wind mill, Assessment of solar insolation and selection of photovoltaic pump Hydraulic ram and its design, Energy loss in pressurized conveyance of pumped water

				Desi	gn of	pum	ping	plant	for in	rrigatio	on and	draina	ige.			
Referenc	es:			Church, A. H. and Jagdish Lal. (1973). Centrifugal Pumps and Blowers, Metropolitan Book Co. Pvt. Ltd. Delhi.												
				Bansal, R. K. (1990). A Text Book of Fluid Mechanics and Hydraulic Machines. Laxmi Publications, New Delhi.												
				Luthine, J N. (1966). Drainage Engineering, Wiley and Sons. New York, USA. Michael, A. M. and Khepar, S. D. (1989). Water Wells and Pump Engineering. Tata McGraw Hill Publishing Co., New Delhi.												
Course C	Dutcom	les		CO1 pum paratic CO2 mov select CO3 (win select solar CO4 desig press for n CO5 appli required know	L: Ur ps a meter 2: An ers (e ction 1 3: Eva d, so ct pho f inso l: Un gn the surize ninim 5: De icatio ireme	nderst nd v s on alyze electr based aluate lar) to tovo lation derst ent for sign ns, c ents, c e of j	tand well their and ic mo ic mo lon v e the for p ltaic n data and t or eff ter c g then pump conside energ pump	the lifts, perfo perfo otors, vater poter umpi pump he w icient onvey n. ping dering y effi	desig inc rman orm t diese sourc tial c ng ap os ba orkin wate yance plant g fac cienc me n	n prin luding ce. he ma el eng ce char of non- oplicat sed or ag prin er lifti e syste s for tors li cy, and	Il be al nciples g the atching ines, et racteris -conve tions. I n avail nciple of ng. An ms and both in ike wa l cost-o , and h	of va influe of pu tc.) and tics. ntional Design able w of hyd alyze d imple crigatic ater so effectiv	mce mps d opt l ener vind e raulic energ emen on an ource, veness	of with imize gy so dmill energ v los t stra d dra disc s. Int	lesign prime thein burces s and y and us and ses in tegies tinage egrate	
Mapping	betwe	en C	Os w	ith P(Os an	d PS	Os									
Mapping	g betw	een (Cos, I	POs a	and P	SOs										
CO	PO		r -	1.	Г_	1.	r	Г	_	1.		1.	PS		1_	
<u>CO1</u>	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1 CO2																
						-					-		_			
													_			
CO2 CO3 CO4																

Course code	IDE 513
Course title	GROUND WATER ENGINEERING
Corse credit	3 (2+1)
Objective of Course	After completion of course student will be able to analyze storage, movement and flow characteristics of different aquifers, able to model ground water and plan for ground water recharge.
Course Content	Properties affecting groundwater storage and movement, groundwater balance studies.
	Well hydraulics, two dimensional flow, steady and unsteady state flow in confined, unconfined and semi-confined aquifers, steady flow in sloping aquifers, partial penetrating wells. Analysis of multi-aquifers.
	Flow analysis in interfering wells. Pumping tests and determination of aquifer parameters.
	Groundwater modeling for water resources planning.
	Techniques for groundwater recharge.
References:	Boonstra J & de Ridder NA.1981. Numerical Modelling of Groundwater Basins. ILRI. Demenico PA 1972. Concept and Models in Groundwater Hydrology. Mc Graw Hill. Jat, M.L. and SR Bhakar 2008. Ground Water Hydrology. Agrotech Publishing Academy, Udaipur.
	Huisman L.1972. Ground Water Recovery, Mac Millan.
	Polubarinova Kochina P Ya 1962. Theory of Ground Water Movement. Princeton Univ. Press.
	Raghunath HM. 1992. Ground Water. Wiley Eastern. Todd DK 1997. Ground Water Hydrology. Wiley Eastern.
Course Outcomes	At the end of the course, learners will be able CO1: Understand the properties of aquifers affecting groundwater storage and movement, including porosity, hydraulic conductivity, specific yield, and specific storage. Analyze groundwater balance studies for sustainable management. CO2: Analyze well hydraulics, including two-dimensional flow, steady and unsteady state flow in confined, unconfined, and semi-confined aquifers, steady flow in sloping aquifers, and

partial penetrating wells. Apply appropriate analytical solutions
for different aquifer types and well configurations.
1 1 0
CO3: Analyze flow in interfering wells and the impact of
pumping on neighboring wells. Design and conduct pumping
tests and interpret data to determine key aquifer parameters like
hydraulic conductivity and transmissivity.
CO4: Utilize groundwater modeling tools for water resources
planning and management. Develop and apply models to
simulate groundwater flow, predict aquifer response to pumping
and recharge, and inform decision-making for sustainable water
resource utilization.
CO5: Evaluate and implement techniques for groundwater
recharge, including artificial recharge basins, injection wells, and
managed aquifer recharge (MAR) methods. Analyze the
effectiveness of different recharge strategies in enhancing
groundwater resources.
Mapping between COs with POs and PSOs

Mapping between Cos, POs and PSOs

CO	PO	PO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	IDE 514
Course title	SOIL-WATER-PLANT RELATIONSHIP
Corse credit	3 (2+1)
Objective of Course	After completion of course student will be able to analyze factors responsible for water movement in soil, plant and evaporative demand of plant, student will be able to estimate the evapotranspiration using meteorological data.
Course Content	Aerial and edaphic environment for plant growth, Energy and Mass transfer in and above crop canopies, Plant response to environmental stresses, Evapo-transpiration models, Instrumentation techniques for monitoring plant environment, Processes and aspects of growth and development, Soil root interface, Root sink functions,
	Well hydraulics, two dimensional flow, steady and unsteady state flow in confined, unconfined and semi-confined aquifers, steady flow in sloping aquifers, partial penetrating wells. Analysis of multi-aquifers.
	Flow analysis in interfering wells. Pumping tests and determination of aquifer parameters.
	Water movement in soil-plant-atmosphere continuum, Artificial environment and plant behavior
	Design and operation of controlled environment facilities and their instrumentation.
References:	
Course Outcomes	At the end of the course, learners will be able
	CO1: Analyze the interactions between aerial and edaphic environments, including energy and mass transfer processes in and above plant canopies. Understand plant responses to environmental stresses and utilize appropriate evapotranspiration models for water management.
	CO2: Apply instrumentation techniques to monitor plant environment and its impact on growth. Analyze the processes and aspects of plant growth and development, focusing on soil-root interface and root sink functions.
	CO3: Understand the principles of well hydraulics, including

	two-dimensional flow, steady and unsteady state flow in various aquifer types (confined, unconfined, semi-confined), and flow in sloping aquifers and partial penetrating wells. Analyze multi- aquifer systems and flow interactions between wells.
	CO4: Analyze flow patterns in interfering wells and interpret pumping test data to determine aquifer parameters like hydraulic conductivity and transmissivity. Apply this knowledge to assess groundwater resources and manage well operations.
	CO5: Understand the movement of water within the soil-plant- atmosphere continuum and the effects of artificial environments on plant behavior. Design and operate controlled environment facilities with appropriate instrumentation for optimal plant growth conditions.
Mapping between COs w	vith POs and PSOs

CO	РО												PSC	PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1																
CO2																
CO3																
CO4																
CO5																

Course code	IDE 515
Course title	Water Supply and Treatment
Corse credit	3 (3+0)
Objective of Course	Understanding importance and necessity of water Supply scheme, water quality, water treatment objectives and water conveyance system and able to estimate water demand for population of target area.

Course Content	Water Quantity: Importance and necessity of water supply scheme. Water demands and its variations. Estimation of total quantity of water requirement. Population forecasting. Quality and quantity of surface and ground water sources. Selection of a source of water supply. Types of intakes.
	Water Quality: Impurities in water and their sanitary significance. Physical, chemical and bacteriological analysis of water, water borne diseases, water quality standards.
	Water Treatment: Objectives, treatment processes and their sequence in conventional treatment plant, sedimentation – plain and aided with coagulation. Types, features and design aspects. Mixing basins and Flocculation units. Filtration – mechanism involved, types of filters, slow and rapid sand filtration units (features and design aspects), Disinfection principles and aeration. Other water treatment processes: Purification processes in natural systems, water softening, removal of taste and odour, advanced methods of water treatment, deflouridation, dissolved solids removal.
	Water Conveyance System: Conveyance of water, Intake structures, Rising and Gravity system, Dual systems, Pumping Systems and pumping stations, valves and appurtenances, pipe materials and pipe fitting, O&M and trouble shooting for conveyance system.
	Water Distribution System: Layout of Distribution system – Dead End system, Grid Iron system, Ring system, Radial system, their merits and demerits, Distribution Reservoir- functions and determination of storage capacity, Water Distribution Network, analysis of distribution network, layout, capacity and pressure requirements, leak detection, Maintenance, Water supply in buildings and plumbing.
References:	Steel, E.W. Water Supply and Sewerage
	Terence, J. Mc Ghee Water Supply and Sewage by J. Mc Ghee. Kshirsagar, S.R. Water Supply Engineering
	Garg, S. K. Water Supply Engineering
	Punmia, B.C., Jain, Ashok & Jain, Arun. Water Supply Engineering: B.C. Punmia, Ashok Jain & Arun Jain.
	Manual on Water Supply and Treatment: Ministry of Urban Dev., New Delhi. Chatterjee, A. K. Water Supply Waste

	Disposal and Environmental Pollution Engineering.
	Duggal, K. N. Elements of Public Health Engineering.
	Birdie, G. S. and Birdie J. S. Water Supply and Sanitary Engineering Peavy, S., Donald, R. Rowe and George Tchobanologlous Environmental Engineering
	Mark, T. Hammer, Water and Waste Water Technology
Course Outcomes	At the end of the course, learners will be able
	CO1: Assess the importance of water supply schemes and estimate water demands for various purposes, considering population forecasting and source availability. Analyze the quantity and quality of surface and groundwater resources and select suitable water sources for specific needs. Design appropriate intake structures for water withdrawal.
	CO2: Understand the types and significance of impurities in water, their impact on human health, and waterborne diseases. Analyze water quality through physical, chemical, and bacteriological testing and evaluate compliance with relevant standards.
	CO3: Explain the objectives and sequence of water treatment processes in conventional treatment plants. Design and analyze sedimentation (plain and aided with coagulation), mixing basins, flocculation units, and filtration systems (slow and rapid sand filters). Implement disinfection principles and understand the role of aeration in water treatment.
	CO4: Design and analyze water conveyance systems, including intake structures, rising and gravity systems, dual systems, pumping stations, and pipe networks. Select appropriate pipe materials and fittings, and develop operation and maintenance (O&M) strategies for the conveyance system.
	CO5: Analyze and design water distribution systems, considering various layout options (dead-end, grid-iron, ring, and radial systems) and their merits and demerits. Determine storage capacity of distribution reservoirs, analyze network connectivity and pressure requirements, and implement leak detection and maintenance strategies. Design water supply systems for buildings, considering plumbing principles and regulations.

Aapping between Cos, POs and PSOs

			,												
CO	РО											PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4 CO5															
CO5															

Course code	IDE 516
Course title	Climate Change and Water Resources
Corse credit	3 (3+0)
Objective of Course	To acquaint and equip the students with the concepts of weather and climate, to make them familiars with climate changes and there impacts on different resources on the earth. How to tackle the problem the climate change. Forecasting methods for prediction of water resources for effective under future under climate change.
Course Content	Climate and weather: Basic concept of climate, Climate and weather, climatic classification, drivers of climate change, over view of changing climate, analysis of climate change, climate forecasting.
	Hydrologic system overview with drought and floods: Hydrologic system overview, global and national water budget, rainfall and temperature variability, an overview of climate change effects on water (runoff, ET, Soil Moisture, GW), and soil (sediment) resources, climate change and droughts & floods.
	Climate forecast: GCM and RCM. An overview of future climate scenarios, Assessment of future water resources (surface/GW/SM) status and vulnerability. Application of hydrologic models in present and future resources assessment, probabilistic methods of results interpretation of future water resources.
	Adaptation and mitigation under climate change: Climate change adaptation capacity & methods analysis, Sensitivity of the changing climate on WR, Application of CC forecasts on water resources management (reservoirs, surface water, GW).
	Impact on climate change on water resources and agriculture: Impact on climate change case studies, agriculture, waters resources in India and around the globe. Case studies based on different river basin of India and globe. Application of hydrological modelling to assess the impact the climate change in future.
References:	Cowie Johathan (2013). Climate change Biological and Human Aspects, Cambridge University Press.
	Lal, D. S (2012). Climatology, Sharda Pustak Bhawan.

	Singh, B. K (2012). Specifications of Sustainable development					
	and climate change, Surendra Publications					
	Pipe, Jim (2011). Specifications of Planet Earth: Weather and Climate, Octopus Publishing Group.					
	Sutcliffe, R. C, 1967. Weather and Climate: The Advancement of Science Series, W.					
	W. Norton & amp; Company.					
Course Outcomes	At the end of the course, learners will be able CO1: Understand the fundamental concepts of climate and weather, including climate classification, drivers of change, and current and future trends. Analyze climate change data and utilize climate forecasts for informed decision-making. CO2: Gain a comprehensive understanding of the hydrologic system, including the global and national water budget, rainfall- temperature interactions, and the impact of climate change on water resources (runoff, evapotranspiration, soil moisture, groundwater) and soil resources (sediment). Analyze the relationship between climate change and droughts and floods. CO3: Familiarize yourself with global climate models (GCMs) and regional climate models (RCMs). Analyze future climate scenarios and assess potential impacts on water resources (surface water, groundwater, soil moisture). Apply hydrologic models to evaluate future water resources availability and vulnerability under changing climatic conditions. CO4: Understand climate change adaptation and mitigation strategies in the context of water resources management. Analyze the sensitivity of water resources to changing climate and apply climate forecasts for efficient reservoir and surface water management, including groundwater management. CO5: Evaluate the impact of climate change on water resources and agriculture through case studies from India and around the globe. Apply hydrological modeling techniques to assess the future impact of climate change on specific river basins and develop appropriate adaptation and mitigation strategies for sustainable water management.					
Mapping between Cos,	POs and PSOs					
CO PO	PSO 4 5 6 7 8 0 10 11 12 1 2 2					
1 2 3	4 5 6 7 8 9 10 11 12 1 2 3					

CO1								
CO2								
CO3								
CO4								
CO5								

Course code	IDE 601								
Course title	DESIGN, OPERATION & EVALUATION OF PRESSURIZED IRRIGATION SYSTEM								
Corse credit	3 (2+1)								
Objective of Course	Developing competency for hydraulic design of drip as well as sprinkler irrigation system for particular area and crop based on site situation, to develop the common understanding of filtration unit in drip and sprinkler irrigation and able to estimate the fertilizer requirement for particular crop, able to assess the cost effective drip and sprinkler irrigation system for particular area and crop.								
Course Content	Filtration units, drip fertigation, Distribution uniformity of water, Pressure distribution in the system, Cost economics of different systems, Evaluation of micro and sprinkler irrigation system Basic hydraulics of sprinkler and drip system, Pipe flow								
	analysis, Friction losses and pressure variationFlow in nozzles and emitters, Design of sprinkler drip and microirrigation system in relation to source, soil, climate and								
	topographical conditions								
	Selection of pipe sizes, pumps and power units, layout distribution, efficiency and economics								
	Fertilizing through sprinkler and drip system. Pressurized irrigation networks system (PINs)								
References:	Sivanappan, R.K. (1987). Sprinkler Irrigation. Oxford and IBH Publishing Co. New Delhi.								
	Finkel, H.J. (1983). Handbook of Irrigation Technology Vol. I CRC Press, Florida, USA.								
	Karmeli, D., Peri, G. and Todes, M. (1985). Irrigation Systems: Design and Operation. Oxford University Press. Captown.								
	Sivanappn, R.K. Padmakumari, O. and Kumar V. (1987). Drip Irrigation. Keerthy Publishing House Coimbature.								
	Pillsbury, A.F. (1972). Sprinkler Irrigation, FAO Agricultural Development Paper No. 88, FAO, Rome.								

	Mane & B. L. Ayare, Design Operation of Drip Irrigation, Jain Publications. Mane & B. L. Ayare, Design Operation of Sprinkler Irrigation, Jain Publications.
Course Outcomes	At the end of the course, learners will be able CO1: Understand the fundamental hydraulic principles of both sprinkler and drip irrigation systems, including pipe flow analysis, friction losses, pressure variation, and flow characteristics of nozzles and emitters. CO2: Design and evaluate micro and sprinkler irrigation systems based on source water characteristics, soil properties, climate conditions, and topographical features. Optimize layout and distribution for efficient water and nutrient delivery. CO3: Analyze the uniformity of water distribution and pressure within the irrigation system, ensuring optimal crop growth and resource utilization. Evaluate the cost-effectiveness of different irrigation options and select the most suitable system based on specific needs and constraints. CO4: Design and operate Pressurized Irrigation Networks (PINs) for efficient water conveyance and distribution. Select appropriate pipe sizes, pumps, and power units based on hydraulic calculations and system requirements. CO5: Implement fertigation techniques through sprinkler and drip systems, ensuring effective application of fertilizers and nutrients for improved crop yield and nutrient management. Analyze the efficiency and economics of fertigation compared to traditional fertilization methods. with POs and PSOs
Mapping between Cos,	POs and PSOs

CO	PO	PO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	IDE 602								
Course title	ADVANCES IN IRRIGATION AND DRAINAGE								
Corse credit	3 (3+0)								
Objective of Course	After completion of course student will be familiar about Advance methods of Irrigation and Drainage, drainage material and various sources of agricultural pollution, able to develop and apply simulation model for management of drainage system for particular area.								
Course Content	Advances in surface irrigation systems-surge irrigation : effect of surging on surface flow hydraulics, cablegation: water supply management.								
	Atomization in sprinkler and micro irrigation systems; multipurpose and special uses of micro irrigation.								
	Synthetic materials for drainage systems. Environmental issues related to drainage. Socio-economic impacts of drainage systems.								
	Controlled drainage for reducing agricultural non point pollution. Application of simulation models for drainage systems.								
References:	FAO. 1082. Mechanized Sprinkler Irrigation. FAO Irrigation and Drainage Paper 35. FAO. 1989. Guidelines for Designing and Evaluating Surface Irrigation System.FAO Irrigation and Drainage paper 45.								
	Keller J and Bliesner RD. 1990. Sprinkler land Trickle Irrigation. Chapman & Hall. Ritzema HP. (Ed.) 1994. Drainage Principles and Applications. ILRI. Walker WR & Skogerboe GV. 1987. Surface Irrigation: Theory and Practice, Prentice Hall.								
Course Outcomes	At the end of the course, learners will be able CO1: Analyze the concept of surge irrigation and its impact on surface flow hydraulics. Evaluate the effectiveness of surge irrigation systems compared to traditional surface irrigation methods. CO2: Understand the principles of atomization in sprinkler and micro irrigation systems and its role in improving water application efficiency. Explore the multipurpose and special applications of micro irrigation systems for various agricultural and non-agricultural purposes. CO3: Evaluate the advantages and disadvantages of using synthetic materials for drainage systems compared to traditional								

materials. Analyze environmental issues related to drainage,
including potential impacts on water quality and soil health.
CO4: Understand the concept of controlled drainage and its role
in reducing agricultural non-point pollution. Apply simulation
models to design and optimize drainage systems for specific
agricultural landscapes.
CO5: Analyze the socio-economic impacts of drainage systems,
considering both benefits and potential drawbacks. Develop
strategies to mitigate negative impacts and ensure sustainable
drainage practices for improved water resource management.

Mapping between Cos, POs and PSOs

СО	PO												PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO4 CO5															

Course code	IDE 603
Course title	HYDRO-CHEMICAL MODELLING AND POLLUTANT MANAGEMENT
Corse credit	3 (3+0)
Objective of Course	Demonstrate understanding of hydrodynamics of fluid and pollutant transport through modelling, capable to do water quality analysis of lakes and reservoir based physical and chemical characteristics, develop water reclamation and water reuse plans for irrigation and industries.
Course Content	Hydrodynamics in flow through porous media, Hydrodynamic dispersion, diffusion, convection equation. Analytical and numerical models of contaminant transport in unsaturated soil profile and ground water.
	Water quality management in lakes and reservoirs; physical characteristics; hydrologic and chemical budgets; bio geochemical processes of pollutants, assessment methods.
	Classical wastewater problems; water reclamation, reuse, water quality constraints and considerations for reuse in irrigation and industry; Biological wastewater treatment.
	Modern stream pollution problem. Quality of groundwater and sources of contaminants. Cost economics-environment impact assessment.
References:	Larry W Mays 1996. Water Resources Handbook. Mc Graw Hill.
	Metcalf and Eddey 1994. Wastewater Treatment Engineering and Reuse. John Wiley.
	Soli J Arceivala 1998. Wastewater Treatment for Pollution Control. Tata Mc Graw- Hill.
Course Outcomes	At the end of the course, learners will be able CO1: Understand the principles of hydrodynamics in flow through porous media, including hydrodynamic dispersion, diffusion, and the convection equation. Apply analytical and numerical models to simulate contaminant transport in unsaturated soil profiles and groundwater systems. CO2: Analyze water quality management strategies for lakes and reservoirs, considering physical characteristics, hydrologic and chemical budgets, biogeochemical processes of pollutants,

and assessment methods. Develop and implement remediation
strategies for polluted water bodies.
CO3: Understand the challenges and opportunities associated with water reclamation and reuse. Evaluate water quality
constraints and considerations for reuse in irrigation and
industrial applications. Design and analyze biological wastewater
treatment systems for efficient removal of pollutants.
CO4: Analyze modern stream pollution problems and their
impact on aquatic ecosystems. Identify sources of groundwater
contamination and develop strategies for groundwater quality
protection. Assess the cost-effectiveness of different pollution
control measures and conduct environmental impact
assessments.
CO5: Integrate knowledge of hydraulics, contaminant transport,
and water quality management to solve complex environmental
problems. Design and implement sustainable solutions for water
pollution control and environmental protection.

Mapping between Cos, POs and PSOs

СО	PO												PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1																
CO2																
CO3																
CO4 CO5																
CO5																

Course code	IDE 604
Course title	PLANT GROWTH MODELLING & SIMULATION
Corse credit	3 (2+1)
Objective of Course	After completion of course student will be able to know various plant growth models and their application based on input environmental parameters, student will acquainted with generalized agricultural simulator.
Course Content	Introduction to plant growth modelling, Simulation and simulation language Types of models and modelling approaches, Relational diagram of principle process
	Structure of a generalized agricultural simulator, Input environment and techniques for monitoring plant environment, Process and aspects of growth and development, Input yield

	models
	Quantitative analysis of photosynthesis, respiration, growth, water and nutrient uptake, Yield functions. Remote sensing based modelling.
References:	Nobel, P.S. (1991). Physicochemical and Environment Plant Phsiology. Academic Press Inc. San Diego, CA, USA.
	Goudriaan, J and Van Laar, H.H. (1994). Modelling Potential Crop Growth Process. Kluweer Academic Publisher, Dordrecht, Netherlands.
	Levitt, J. (1972). Responses of Plants to Environment Stress. Academic Press, New York. USA.
	Evans, L.T. (1963). Environmental Control of Plant Growth. Academic Press, New Yor, USA.
	Charls-Edwards, D.A. (1981). The Mathematics of Photosysnthesis and Productivity Academic Press, London
	Jones, J.W. and Ritchie, J.T. (1990). Crop Growth Models. In: ASAE Monograph on Management of Farm Irrigation Systems, Editted by:G.J. Hoffman, T.A. Howell and
	K.H. Solomon, ASAE, St. Joseph, Michigan, USA
Course Outcomes	At the end of the course, learners will be able
	CO1: Understand the basic concepts of plant growth modeling, including simulation techniques and commonly used simulation languages. Analyze different types of models and their underlying approaches to understanding plant growth processes.
	CO2: Construct relational diagrams to represent the key processes involved in plant growth and development. Design and develop a generalized agricultural simulator based on these principles.
	CO3: Define the input parameters required for plant growth models, including environmental data and techniques for monitoring the plant environment. Analyze the processes and aspects of growth and development, considering factors like photosynthesis, respiration, water and nutrient uptake, and yield functions.
	CO4: Develop quantitative models for photosynthesis,

	respiration, growth, water and nutrient uptake, and yield functions. Apply these models to analyze and predict plant growth under different environmental conditions.
	CO5: Integrate remote sensing data into plant growth models for improved accuracy and real-time monitoring. Analyze the advantages and limitations of remote sensing-based modeling compared to traditional methods.
Mapping between COs w	vith POs and PSOs

Mapping between Cos, POs and PSOs

CO	PO												PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	IDE 605
Course title	FLOW THROUGH POROUS MEDIA
Corse credit	2 (2+0)
Objective of Course	To acquaint and equip with the hydraulics and process of water flow in the water bearing formation under saturated as well as unsaturated conditions.
Course Content	Aquifer and fluid properties, forces holding water in soils, hydrodynamics in porous media and limitations of governing laws.
	Differential equations of saturated flow, initial and boundary conditions. Dupuit and Business approximations and linearization techniques.
	Stream functions, potential functions and flow net theory. Analysis of seepage from canals and ditches.
	Unsaturated flow theory, Infiltration and capillary rise flux dynamics. Hydro-dynamic dispersion in soil-aquifer system.
References:	Harr Milton E. 1962. Groundwater and Seepage. McGraw-Hill. Jacob Beer 1972. Dynamics of Fluid Flow in Porous Media. Elsevier.
	Muskat M & Wyckoff RD. 1946. The Flow of Homogeneous Fluids through Porous Media. JW Edwards.
	Patrick A Domenico & Schwartz FW. 1998. Physical and Chemical Hydrogeology. John Wiley & Sons.
	Remson I, Hornberger GM & Moiz Fred J. 1971. Numerical Methods in Subsurface Hydrology. Wiley Interscience.
Course Outcomes	At the end of the course, learners will be able
	CO1: Understand the properties of aquifers and fluids, including porosity, permeability, hydraulic conductivity, specific yield, and specific storage. Analyze the forces holding water in soils and the principles of hydrodynamics in porous media.
	CO2: Solve differential equations governing saturated flow in porous media, considering initial and boundary conditions. Apply Dupuit and Business approximations and linearization

	techniques to simplify complex flow problems.									
	CO3: Utilize stream functions, potential functions, and flow net theory to analyze groundwater flow patterns and solve seepage problems. Analyze seepage from canals and ditches and design appropriate drainage systems.									
	CO4: Understand the principles of unsaturated flow theory, including infiltration and capillary rise dynamics. Analyze the impact of hydrodynamic dispersion on contaminant transport in the soil-aquifer system.									
	CO5: Integrate knowledge of aquifer properties, flow equations, and analytical techniques to solve various groundwater management and engineering problems. Design and implement sustainable solutions for water resource conservation, groundwater pollution control, and aquifer recharge.									
Manning hatrugan COas	ith DOs and DSOs									
Mapping between COs w	nn POS and PSOS									
Mapping between Cos,	Mapping between Cos, POs and PSOs									

CO	PO												PSC)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1														
CO2														
CO3														
CO4														
CO5														

Course code	IDE 606
Course title	ADVANCED HYDO-MECHANICS IN SOIL AQUIFER SYSTEMS
Corse credit	3 (3+0)
Objective of Course	To acquaint and equip the students with the advance soil-aquifer- water mechanics and various techniques for the analysis of the system.
Course Content	Soil aquifer system. Flow of water in partially saturated soils. Partial differential equation of flow.
	Determination of unsaturated hydraulic conductivity and models for its estimation.
	Infiltration and exfiltration from soils in absence and presence of water table. Movement of groundwater in fractured and swelling porous media.
	Spatial variability. Theory of krigging. Statistical approaches in soil water dynamics.
References:	Kirkham & Powers.1972. Advanced Soil Physics. John Wiley & Sons.
	Muskut M.1937. The Flow of Homogeneous Fluid through Porous Media. McGraw Hill.
Course Outcomes	At the end of the course, learners will be able
	CO1: Understand the concept of the soil-aquifer system and the principles governing water flow in partially saturated soils. Analyze the partial differential equation of flow and its application to various soil water dynamics problems.
	CO2: Determine unsaturated hydraulic conductivity, a critical parameter for predicting water movement in unsaturated soils. Evaluate different models for estimating this parameter based on experimental data.
	CO3: Analyze infiltration and exfiltration processes in soils, accounting for the presence or absence of a water table. Develop solutions for infiltration and exfiltration problems under different soil and boundary conditions.
	CO4: Understand the unique characteristics of groundwater

movement in fractured and swelling porous media. Develop analytical or numerical models to analyze flow patterns and contaminant transport in these complex systems.
CO5: Apply statistical approaches to analyze spatial variability in soil properties and water content. Use geostatistics, particularly kriging, to estimate unknown soil properties at unsampled locations and improve the accuracy of soil water dynamics predictions.

Mappin	g betw	een (Cos, I	POs a	and I	PSOs									
CO	CO PO PSO														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course code	IDE 607
Course title	COMMAND AREA DEVELOPMENT
Corse credit	3 (2+1)
Objective of Course	Able to understand the concept of command area and its development, able to analyze problem diagnostics and remedies of command area, able to understand the performance evaluation procedure if command area.
Course Content	Concept of command area development as an integrated approach
	Command area project formulation, Major, medium and minor projects, various clearances involved for project approval
	Command areas in India, Command area activities and their prioritization,
	Source of budget for CAD works, Structure of command area development organization, legal aspects of natural resource development
	Partnership among developers, managers and users of natural resources in a command area, Diagnostic analysis and perform appraisal of command area projects
References:	Kumar, P. (1977). Economics of Water Management. Heritage Publishers, New Delhi.
	Garg, S.K. (1987). Hydraology and water resources engineering, Khanna Publishers, Delhi.
	Michael, A.M. (2006). Irrigation theory and practice. Vikas Publications, New Delhi. Sharma, R.K. (1987). Hydrology and water resources engineering, Dhanpat Rai & Sons, New Delhi.
Course Outcomes	At the end of the course, learners will be able CO1: Understand the concept of command area development (CAD) as an integrated approach to optimize water resource utilization and improve agricultural productivity within a specific irrigation project area. CO2: Analyze the process of command area project formulation, including project types (major, medium, minor) and the various clearances required for project approval. Gain an overview of existing command areas in India. CO3: Identify and prioritize key command area activities, such

	as on-farm development, irrigation system improvement, an drainage management. Understand the sources of budget for CAD works and the structure of command area development organizations. CO4: Analyze the legal aspects of natural resource development within command areas, considering water rights, lan acquisition, and environmental regulations. Develop strategies for promoting partnership among developers, managers, an users of natural resources for sustainable management. CO5: Conduct diagnostic analysis and perform an appraisal of command area projects, evaluating their technical feasibility financial viability, and socio-economic impacts. Recomment appropriate interventions and strategies for improving project performance and achieving desired outcomes.												et for oment land tegies , and sal of bility, umend		
Mapping b	betwe	en C	Os w	ith PO	Os an	d PS	Os								
Mapping	betw	een (Cos, I	POs a	und P	SO s									
CO	PO												PS	0	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															

	10												190)	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															

Course co	de			CE	501										
Course tit	le			OPI	EN C	HAN	INE	L FL	OW						
Course cr	edit			3+0											
Objective	of C	ourse	2		C 5. A E 5. P Ir	ompu pplic ngine rofici nstabi	utation ation eering ency lities	ons of U g in A	nifor nalyz	m Flov zing Flo	w Cono ow Cha	rinciple cepts in aracteri	Hyd stics	rauli	с
Course Co	ntent				7. Mastery in Analyzing Varied Flow Scenarios. ourse content:										
				mon appl UNI com UNI distr UNI com UNI	TIC nentu icatio TII putat TII TII TIV putat	um pr ons. Unif ion. I Bou on ar Gra ions. Hydu	incip form f indar ind ins duall caulic	les. C flow. y layo tabili y var	Its d Its d er co ity of ied fl p and	al flow evelop ncept. unifor low the	comp ment. I Surfac m flov cory an e as lev	d analy velling	a and a and iness. vsis. N energ	desi Velo Metho y	ocity od of
				dissipation. UNIT VI Spatially varied flow. Unsteady flow. Rapidly varied flow.											
References		een (Suggested Readings Henderson FM.1966. Open Channel Flow. Macmillan. Subramaninum 1960. Open Channel Flow. McGraw Hill. Ven T Chow. 1959. Open Channel Flow. McGraw Hill At the end of the course, learners will be able CO1: Mastery in Computational Methods for Open Channel Critical Flow CO2: Application of Uniform Flow Formulas and Design Computations CO3: Proficiency in Analyzing Boundary Layer Effects and Flow Instability CO4: Competency in Gradually Varied Flow Analysis and Rapidly Varied Flow Computation 											
CO	Jetw		<i>_</i> US,	1 (15)	anu I	1 308	PO							PSC	
	1	2	3	4	5	6	<u>7</u>	8	9	10	11	12	1	2	3
C01	1		5			-	-	-	-	-	-		1		5
CO1					1	-	-	-	-	-	-				
CO2				-	-	-	-	-	-	-	-				
CO4					-	-	-	-	-	-	-				
					-		-		-						

Course code	CE 502										
Course title	DAMS & RESERVOIR OPERATIONS										
Course credit	3+1										
Objective of Course	 Comprehensive Understanding of Dam Construction and Design Principles Proficiency in Analyzing Stability and Seepage Aspects of Dams Competency in Planning and Assessing Reservoirs and Spillways Mastery in Economic Evaluation and Flood Management of Storage Projects 										
Course Content	 Theory UNIT I Dams classification. Suitable site selection for dams & reservoirs. Survey & planning of storage projects. UNIT II Type of concrete dams. Forces acting on concrete dams. Stability analysis. Methods of design of gravity dams. Temperature control for dams. UNIT III Earth dams and their types. Methods of construction. Causes of failure & remedial measures. Seepage and stability analysis of earth dams. UNIT IV Foundation treatment. Abutment grunting. Instrumentation in dams. UNIT V Spill way and spillway capacities and spillway gates. UNIT VI Reservoir planning, Storage, sedimentation, Losses, Economics. Flood routing. 										
Deferrer	Exercises on above topics										
References:	 Suggested Readings Bharat Singh. 2002. Earthen Dams. New Chand & Bros., Roorkee. Creager WP, Justin JD, Hinds J. 1945. Engineering for Dams. Vols. I-III. John Wiley & Sons. Sharma HD. 1981. Concrete Dams. Metropolitan 										
Course Outcomes											
СО	PO PSO										
1 2 3	4 5 6 7 8 9 10 11 12 1 2 3										

CO1						-	-	-	-	-	-		
CO2	-		-			-	-	-	I	-	-		
CO3	-	-		-	-	-	-	-	-	-	-		
CO4		-	-		-	-	-	-	-	-	-		

Course code	CE 503
Course title	WATER QUALITY AND POLLUTION CONTROL
Course credit	3+1
Objective of Course	 Understanding the spectrum of impurities and contaminants in water, and mastering diverse analysis methods for assessing water quality comprehensively. : Acquiring skills in effective purification techniques and treatments to ensure the delivery of potable and safe water for domestic and industrial use. Proficiency in characterizing wastewater, exploring various disposal methods, and implementing efficient treatment techniques for responsible environmental impact. Understanding and application of local and international environmental laws and regulations concerning water pollution, integrating legal knowledge into effective pollution control strategies.
Course Content	Course content: Theory UNIT I Impurities in water. Water analysis (Physical, Chemical and Bacteriological). UNIT II Indices of water quality for domestic and industrial uses. Monitoring of water quality from various sources of water pollution. UNIT III Purification of water supplies. UNIT IV Waste water characteristics and disposal methods. UNIT V Waste water treatment. UNIT VI Mathematical modeling on pollution control. Environmental legislation on water pollution in India and abroad. Practical Determination of pH, dissolved and suspended solids, Chlorides, Sulphates, turbidity, dissolved oxygen hardness, BOD, COD, Nitrogen (Ammonical, nitrate, nitrite), MPN, Total count of bacteria in water/sewage samples
References:	 Suggested Reading Garg SK. 2004. Environmental Engineering. Vol. II. Khanna Publ. Garg SK. 2004. Environmental Engineering. Vol. I. Khanna Publ. Howard S Peavey, Donald R Rod & Tchobanglous G.

Course Ou	tcom	es		CO1 asses CO2 deliv CO3 treat	 M of M Tr me end Ma ssmer 2: Ap very. 3: Proment 4: Contemport 	anua Urba etcal <u>eatm</u> l of t ster c nt. ply v ficient techn	l of V an De f and <u>ent a</u> he co livers ariou ntly r nique	Vater velop Eddy urse, se and s pur nanag s.	Supp pmen y. 200 euse. learr alysis ificat ge wa	bly and t, New 3. Wa <u>Tata N</u> ners wi metho ion me astewat	Treati Delhi ste Wa <u>AcGrav</u> II be at ods for ethods :	ter Eng v Hill	999] ginee qualit e wat	Minis ring ty er tive	
Mapping	betw	een (Cos, I	POs a	and P	SOs									
CO							PO							PSC)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1			-	-			-								
CO2			-	-											
CO3			-	-			-								
CO4			-	-		-	-								

Course code	CE 504
Course title	FLUVIAL HYDRAULICS
Course credit	2+1
Objective of Course	 Grasp the fundamental properties of sediment and various mechanisms governing its transport in different flow regimes. Attain skills in analyzing alluvial streams, including their hydraulic geometry, bed level variations, and transport characteristics of sediment loads. Acquire proficiency in sediment sampling methods, river modeling, and understanding the transport of sediment through pipes. Develop expertise in practical problem-solving related to sediment properties, flow regimes, resistance, and transport in real-world scenarios.
Course Content	TheoryUNIT I Sediment properties, Sediment problems. Incipientmotion of sediment particles.UNIT II Regimes of flow. Resistance to flow.UNIT III Bed load. Suspended load. Total load transport. UNITIV Alluvial streams and their hydraulic geometry. Bed levelvariations in alluvial streams.UNIT V Sediment samples and sampling. Alluvial river models.

	 Sediment transport through pipes. Bed level variations in alluvial streams. River Practical Problems on determination of sediment properties, regimes of flow, resistance to flow, incipient motion, bed load, suspended load, total load transport and sediment transport
References:	 Suggested Readings Garde RJ & Ranga Rajan KG. 2001. Mechanics of Sediment Transport and Alluvial Stream Problems. Howard H Chang. 1988. Fluvial Process in River Engineering. John Wiley & Sons. Raudkivi AJ. 1990. Loose Boundary Hydraulics. Pergamon Press
Course Outcomes	 CO1: Demonstrate an advanced understanding of sediment properties and the factors influencing sediment transport in diverse flow conditions. CO2: Competently analyze alluvial streams, interpret their hydraulic geometry, and predict variations in bed levels along with sediment transport. CO3: Apply efficient sampling methods, engage in river modeling, and assess sediment transport through pipes with accuracy. CO4: Effectively apply theoretical knowledge to solve practical problems related to sediment properties, flow regimes, and transport scenarios.

Course code	CE 505
Course title	EXPERIMENTAL STRESS ANALYSIS
Course credit	2+1
Objective of Course	 Develop a thorough comprehension of strain, stress, and their interrelationships, and recognize various strain gauge types. Acquire proficiency in using different strain measurement techniques, including mechanical, optical, electrical, and semiconductor strain gauges.
Course Content	 Theory UNIT I Strain and stress, Strain relationship, Strain gauges mechanical, optical, electrical, acoustical and pneumatic etc and their use. Different types of electric strain gauges, Semiconductor gauges. Practical Measurement of strain with strain gauge. Photo elastic methods and Moire's apparatus
References:	 Suggested Readings Srinath LS.1984. Experimental Stress Analysis. Tata

Course Ou	tcom	es			S K D A	hanna ally J nalys	Sadh a Put .W. d is. Ta	u. 19 ol. & W ata N	.F. Ri IcGra	ley, 19 w Hill	990. Ex I	Stress xperime erstand	ental	Stres	
					ty 2. C m	pes. O2: l easur	Exhil emei	oit pr nt me	oficie	ency in s, enco	utilizi mpass	arious s ng dive ing me tor stra	erse s chani	train cal,	
Mapping	betw	een (Cos, l	POs a	and I	PSOs									
CO			Ĺ				PO							PSC)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1				-			-		-	-					
CO2															

Course code	CE 506
Course title	SIMILITUDE IN ENGINEERING
Course credit	2+1
Objective of Course	 Develop a thorough understanding of dimensions, units, dimensional analysis, and similarity analysis, with a focus on theory and practical applications. Attain proficiency in the theory of models, distinguishing true, distorted, and dissimilar models, and applying them to diverse systems including structural and fluid flow systems. Acquire practical skills in conducting experiments related to pendulum periods, cantilever beams, spring-mass systems, deflection analysis, and model-based predictions. Develop expertise in utilizing analogical reasoning and analogue model experiments for addressing and solving complex engineering problems.
Course Content	TheoryUNIT I Dimensions and units.UNIT II Dimensional and similarity analysis. Theory of models.UNIT III True, distorted and dissimilar models.UNIT IV Application to different systems with special referenceto Structural and fluid flow systems, Analogues.PracticalEquations for the period of simple pendulum. Uniformrectangular cantilever beam. Spring mass level system.Investigation of extrapolation. Deflection of a cantilever beam.Prediction of the deflection of a beam using a model. Analoguemodel experiments
References:	Suggested Readings

 Green Murphy.1950. Similitude in Engineering. R Press. Huntley HE. 1974. Dimensional Analysis. Dover I Stephen J Klin.1965. Similitude and Approximatio Theory. McGraw Hill Course Outcomes At the end of the course, learners will be able 														ver P	ubl.	
Theory. McGraw HillCourse OutcomesAt the end of the course, learners will be able CO1: Demonstrate mastery in comprehending dimensions, units dimensional analysis, and similarity analysis, and apply them proficiently. CO2: Exhibit proficiency in understanding model theory and its application to various systems, distinguishing between true, distorted, and dissimilar models. 													m nd its , nts , nd			
Mapping CO	betw	een (Cos, I	POs a	and F	PSOs	PO							PSC		
	1	2	3	4	5	6	PU 7	8	9	10	11	12	1	<u>PSC</u> 2	3	
CO1		-	-	-		-					-				-	
CO2				-		-					-					
CO3				-												
CO4				-		-					-					

Course code	CE 507
Course title	CONTROL OF POLLUTION FROM SOLID WASTES
Course credit	2+0
Objective of Course	 Develop a comprehensive understanding of solid waste, encompassing its sources, characteristics, collection, handling, and reduction strategies. Attain proficiency in various waste disposal methods, their merits, demerits, and the processing of solid waste to derive value such as fertilizers, fuel, and food. Acquire practical skills in handling, collecting, storing, transporting solid waste, and applying techniques for recycling, reusing materials, and energy recovery. Apply sustainable waste management practices by integrating knowledge of waste reduction, recycling, and efficient disposal methods.
Course Content	Course content: Theory UNIT I Definition. Sources. Quality, Classification and characteristics of solid waste collection, Transport and reduction at source.

		UNIT II Handling, Collection , Storage, transport of Solid wastes.														
						Disp	osal r	netho	ods ai	nd thei	r merit	s and d	emei	rits.		
				UNI	T IV	Proc	essing	g of s	olid	wastes	. Fertil	izers, f	uel a	nd foo	od	
				valu	es.											
				UNI	ΤVΕ	Recy	cling	and r	euse	materi	als and	l energy	y rec	overy		
				operations												
References	:	Suggested Readings														
				•					-	-		2.Handb	ook	of So	lid	
		 Waste Management. McGraw Hill. Ramachandra TV. 2006. Management of Munic Solid Weste, Capital Publ. Co. 											icipal			
Course Ou	tcom	Solid Waste. Capital Publ. Co omes At the end of the course, learners will be able														
Course Ou	ceom	05		CO1: Demonstrate mastery in understanding the principles of												
				solid waste management, including its sources, classification,												
				and reduction strategies.												
				CO2: Exhibit proficiency in evaluating and applying various												
					-	-		ods a	and p	rocess	ing sol	id wast	e to o	derive	;	
					able p									_		
				CO3: Demonstrate practical skills in effectively handling,												
				collecting, storing, and transporting solid waste, and applying recycling and reuse techniques.												
				•	U				-					I		
				CO4: Apply sustainable waste management practices by integrating knowledge of waste reduction, recycling, and												
				-	integrating knowledge of waste reduction, recycling, and efficient disposal methods for environmental conservation.											
				entic		nsho	5ai 111	CHIOC	15 101	CIIVII			u va			
Mapping	betwo	een (Cos. 1	POs a	and P	SOs										
CO			/			-	PO							PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1				-		-	-		-	-	-					
CO2				-		-	-		-	-	-					
CO3				-		-	-		-	-	-					
CO4																

Course code	CE 601								
Course title	PROBABILISTIC APPROACH IN DESIGN								
Course credit	2+0								
Objective of	1. Gain an in-depth understanding of various engineering								
Course	 design methodologies alongside an introduction to the probabilistic approach. 2. Attain expertise in manipulating random variables, probability distributions, expected values, and conditional probabilities within engineering contexts. 3. Apply the concepts of stationary, ergodic, and non-stationary processes to engineering scenarios involving functions of random variables. 								

				4.	Deve	lop p	oracti	cal sk	tills i	n perfo	orming	auto-co	orrel	ation,		
										-	-	s, and s				
					funct	ions	for e	xperi	ment	al data	analys	is.	-		•	
Course Co	ntent		C	ourse	e cont	tent:										
			T	ieory	:											
				-		ew o	f var	ious a	appro	aches	in engi	neering	des	ign ar	nd	
										roach.			,	-8		
						-					v distril	oution a	nd d	lensit	V	
										-					,	
				functions. Expected values, Mean. Variance, Conditional probability. Characteristic functions.												
			-	UNIT III Function of random variable. Concepts of stationary,												
				ergodic and non- stationary processes.												
				UNIT IV Auto correlation. Cross-correlation. Covariance function												
				Power spectral and cross spectral density functions and their												
				determination from experimental data.												
				UNIT V Broad-band and Narrow band random processes. White												
			noise. Application in various disciplines of engineering													
References	•			Suggested Readings												
iterenenee	•			Benjamin JR & Allen C. 1975. Probability Statistics and											nd	
			• Benjamin JR & Allen C. 1975. Probability Statistics and Decision for Civil Engineers.MGH New York.											iu		
	 Evan DH.1992. Probability and its Applications for 															
										-	cel Del	-	115 10	51		
Course Ou	tcom	A C	Δt								be able	XXC1				
Course Ou	com	05						,				g divers	e en	ninee	rina	
								-		-	-	robabili		gineer	mg	
				-			-		-	• • •	i-solvi		suc			
			-	-			-					lity the	orv s	nd		
												enginee			avte	
				-	-						-	ic, and	-			
												riables				
			-		ering	-	-	lunci	10113	or ranc		naures	mo	practi	icai	
				0	0			ctica	levn	ertice i	n cond	ucting of	orre	latio	n and	
							-		-			1, cross-				
			-			•	-		•			ctions f		ciuit	/11,	
								-	-		•	lication				
Mapping	hetw	een (i unu	90101	in en _i	Smeen	<u>ng upp</u>	neution				
CO				05.		000	PO							PSC)	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
C01	-	1				Ť	Ľ.		-	_	-	-				
CO2							-		-	-	-	_				
CO2							_		-	_	-	_				
CO4							-		-	_	-	-				
							L		L -	<u> </u>	<u> </u>					
Course co	de			CE	602											

Course title	RANDOM VIBRATIONS									
Course credit	2+0									
Objective of Course	 Gain a holistic understanding of how both single and multi-degree linear systems respond to stationary and non-stationary random excitations. Develop expertise in employing the normal mode method to analyze continuous systems, predicting their responses to random excitations in diverse engineering applications. Apply sophisticated non-linear random vibration concepts like level crossing, peak statistics, and fatigue failures in different engineering systems. 									
	 Apply and integrate random vibration analysis practically across mechanical, aerospace, civil, oceanic, and agricultural engineering, addressing real-world challenges. 									
Course Content	Course content:									
	Theory:									
	 UNIT I Response to linear single and multi-degree of freedom system to stationary and nonstationary random excitation. UNIT II Response of continuous systems. Normal mode method. UNIT III Non-linear random vibration. Level crossing. Peak and envelope statistics. First excursion land fatigue failures. UNIT IV Applications to mechanical, aero, civil, ocean and agricultural engineering systems 									
References:	Suggested Readings									
	 Benjamin JR & Allen C. 1975. Probability Statistics and Decision for Civil Engineers. MGH New York. Lipson C & Shets NJ. 1973. Statistical Design and Analysis of Engineering Experiments. McGraw Hill. Subra Suresh. 1998. Fatigue of Materials. Cambridge Univ. Press 									
Course Outcomes	 At the end of the course, learners will be able CO1: Demonstrate mastery in predicting linear system responses to diverse random excitations, considering varying degrees of freedom. CO2: Showcase expertise in utilizing the normal mode method to analyze continuous systems' responses to random excitations, effectively characterizing their behavior. CO3: Apply sophisticated non-linear vibration concepts to engineering scenarios, interpreting statistical measures, predicting failures, and their implications in engineering systems. CO4: Demonstrate practical application of random vibration analysis techniques across diverse engineering domains, tackling real-world complexities and engineering problems. 									
Monning hotmoor C-	POs and PSOs									
Mapping between Cos										
CO	PO PSO PSO									
1 2 3	4 5 6 7 8 9 10 11 12 1 2 3									

CO1		-	-		-		-	-	-		
CO2		I	-		1		-	-	-		
CO3		-	-		-		-	-	-		
CO4		-	-		-		-	-	-		

Course code	CE 603
Course title	DESIGN OF BINS AND SILOS
Course credit	2+1
Objective of Course	 Attain a comprehensive understanding of various theories like Rankine's, Coulomb's, Janssen's, Airy's, and Reimbert's theories related to silo design. Compare and contrast design criteria from different standards (e.g., Australian AS and Indian BIS standards) applicable to bins and silos for better understanding and application. Develop proficiency in using computer-aided design tools and software for the analysis and design of silos, integrating theories and standard codes. Gain practical skills in developing flowcharts and design programs for silos of varying capacities using different standard codes and theories.
Course Content	Theory UNIT I Computer aided design manuals. Rankine's and Coloumb's theories of active and passive pressures. UNIT II Janssen's and Airy's theories grain pressure theories for design of deep and shallow silos. Reimbert's theory of silo design. UNIT III Comparison of Australian (AS) and Indian (BIS) design criteria for bins and silos. UNIT IV Computer aided design of grain silos by developing flowcharts and programs for underground and over ground silos. Practical Analysis and design of silos of various capacities using available software. Use of different standard codes and theories in the development of flowcharts and design program for various capacity silos.
References:	 Suggested readings AS-3774.1990. Loads on Bulk Solid Containers. BS-5061.1974. Specifications for Cylindrical Storage Tower Silos and Recommendations for their use. BIS Relevant Standards. Rajgopalan K. 1989. Storage Structure. Oxford & IBH. Reimbert M & Reimbert A.1956. Design of Bins
Course Outcomes	 CO1: Demonstrate mastery in various silo design theories including Rankine's, Coulomb's, Janssen's, Airy's, and Reimbert's theories. CO2: Apply knowledge acquired from comparing international

design criteria (AS and BIS) for bins and silos to engineering
problems.
CO3: Exhibit proficiency in using computer-aided design
software for analysis and design of silos, incorporating diverse
theories and standards.
CO4: Demonstrate practical expertise in developing flowcharts
and design programs for silos using various capacity
specifications and incorporating standard codes.

Mapping between Cos, POs and PSOs															
CO		РО											PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1						-	-	-	-	-	-	-			
CO2						-	-	-	-	-	-	-			
CO3						-	-	-	-	-	-	-			
CO4						-	-	-	-	-	-	-			

Course code	CSE 501
Course title	COMPUTER GRAPHICS
Corse credit	3 (2+1)
Objective of Course	1. To learn the basic concept of computer graphics
	2. To understand the generating various geometrical shapes and
	various operations.
	3. To understand applications of computer graphics.
Course Content	UNIT I
	Graphic display devices, Interactive devices, Line and circle
	plotting techniques by using Bresenham's algorithm, Windowing
	and clipping, Sutherland Cophen algorithm, Cyrus and Beck
	method
	UNIT II Curre drawing using Harmita Balumamial Bagian aurus B
	Curve drawing using Hermite Polynomial, Bezier curve, B Splines, Picture Transformation, translation, rotation, Scaling
	and Mirroring
	UNIT III
	3D Graphics, 3D transformation rotation about an arbitrary axis.
	Curved surface generation, Hidden surface removal.
	UNIT IV
	Orthogonal Projection and multiple views, Isometric projection,
	Perspective projection, 3D Clipping
	UNIT V
	Generation of solids, Sweep method, Interpolation, Graphic
	Standards, CGS Modeling, Applications of Computer Graphics
	Practical
	Practical problems on above topics
References:	Hearn Donald.1996. Computer Graphics. PHI.
Course Out	Schaum. Series. 2004. Computer Graphics. TMH
Course Outcomes	At the end of the course, learners will be able
	CO1 : The students have the basic concept of computer graphics
	CO2 : The students learn to generate various geometrical shapes

		and apply various operations. CO3 : The students will also learn about various computer graphics applications													
Mapping	g betv	petween Cos, POs and PSOs													
CO						P	0							PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															

Course code	CSE 502
Course title	NEURAL NETWORK AND ITS APPLICATIONS
Corse credit	3 (2+1)
Objective of Course	 To learn the basic concept of neural network models To learn the neural network applications for solving engineering problems
Course Content	Theory UNIT IIntroduction to neural network and its comparison with biological system. Perceptron and linear separable functions, multi-layers perceptrons.
References:	 approximation, time series predictions, pattern recognition, control systems and optimization in engineering problems Haykins S.1999. Neural Network- Comprehensive
	 Study. PHI. Hertz J, Krogh A & Palmer RG. 1991. Introduction to Theory of Neural Computation. Addison-Wesley
Course Outcomes	At the end of the course, learners will be able

	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			neura CO2: netwo proble	l netv The ork m ems.	vork studei	nts lea	ırn to	develo	p diffe	e basic rent typ ngineer	es of	1
Mapping	betwe	en Co)s, P()s an	d PSC)s								
СО							PO							PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1														
CO2														

Course code	EE 501
Course title	APPLIED INSTRUMENTATION
Corse credit	3 (2+1)
Objective of Course	 To acquaint and equip the students with various types of transducers study and analysis of various variables
Course Content	Theory UNIT I Basic instrumentation systems and transducer principles. Displacement Transducers:Potentiometer, LVDT, Piezoelectric and capacitive transducers. Digital Transducers. Velocity transducers – Analog and Digital UNIT II Acceleration and absolute motion measurement. Force transducer -Strain Gauge, Hydraulic load cell, Cantilever type and Probing ring. Method of separation of force – Torque, Power and Energy measuring techniques. UNIT III Temperature measurement using Bi-metals, PTRs, Thermistors, Thermocouples, Electronic IC sensors and Pyrometers. Heat flux measurement. Humidity measurement – Dry and Wet bulb, Hair hygrometer and Humister. Soil and Grain moisture transducers, pressure measurement – Manometers, Bourdon Tube, Diaphragm type transducer. High pressure and vacuum sensing techniques. UNIT IV Flow transducers, Positive displacement, venturimeter, Rotameter, Drag force, Ultrasonic, Electromagnetic, Hot wire anemometers. Time and frequency measurement. UNIT V Level measurement, OD and pH measurement, PCO2 and grain quality measurement. Biomedical measurement – BP, ECG etc., Ultrasonic flaw detection, Spectroscopy

				P	ractio	al									
				St	Study the characteristics of various transducers :										
					Potentiometer, LVDT, Proximity										
					sensors and Photo pickups, Load cell, Thermistor and										
					Thermocouple, LM 335/AD										
				59	590se of various Analog interfacing blocks: Attenuators,										
						iers, A			-		U			ŕ	
				Fi	lters,	digita	al int	terfac	es us	sing V	Nave s	shapers	and	level	
						. Pract				U		1			
				in	terfac	es a	nd d	levelo	ping	suita	ble so	oftware	for	data	
						tion th			1 0						
					-		0		of M	licroco	mputer	kit, St	udy tl	ne use	
											•	<i>,</i>	5		
					of 8255 I/O IC, Study the use of printer port in a PC. Data acquisition thr ough PC/Kit										
References	:				Doebelin EO.1990. Measurement Systems Applications and										
					Design. Tata McGraw Hill. Nakra BC & Chaudhary KK. 2004.										
					Instrumentation Measurement and Analysis. Tata McGraw										
					, Hill.										
					• Sawhney AK. 2008. Electrical and Electronics Measurement										
					and Instrumentation. Dhanpat Rai & Sons										
Course Out	come	S		A	At the end of the course, learners will be able										
					CO1: Obtain the performance characteristics of various										
					transducers and infer the reasons for the behavior.										
				С	CO2: Analyse the characteristics of sensors and transducers.										
					CO3: Summarize the measurement application and suggest										
					suitable measurement methods.										
				C	CO4: Perform experiment to Calibrate the instruments.										
Mapping b	oetwee	en Co	os, PO	Os and	I PSC)s									
CO							PO							PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1															
CO2															
CO3															
CO4															
L															

Course code	EE 502
Course title	PROCESS CONTROL SYSTEM
Corse credit	3 (2+1)
Objective of Course	
	1. To acquaint and equip the students about the concepts involved in process control system

	2. To control variables at the desired level
Course Content	Theory
	UNIT I
	Introduction to Process Control - Controlled Variable,
	Control strategy, Single Variable and multi variable control
	systems, Process Control loop, Open loop and closed loop
	control system, Linear and non linear control system,
	Transfer function and procedure for determining the Transfer
	function of Complex Control System, Representation of a
	Control System by block diagram and its Reduction
	UNIT II
	Characteristics of real Process - Process Equation,
	Controlling & Controlled Variable, Transient & steady state
	response, Self Regulation Property, Control System
	Parameters, Evaluation of Control System.
	UNIT III
	Improved Control through Complex Control of process -
	Controller Modes or actions, On/OFF Mode, Proportional
	Mode, Integral Mode, Derivative Mode, Composite Control
	Mode (PD, PI, PID, Modes).
	UNIT IV
	Analysis of Common loop, involving - Flow control (Solid,
	liquid and gaseous flow), Pressure regulation (Pressure
	Transducers), Liquid level (Mechanical & Electrical
	Systems), Temperature Control (Thermistor and
	thermocouple).
	UNIT V
	Introduction to Computer Control of Process Application
	and design - Signal Conditioning, Design of OP AMPS
	circuits used to implement Proportional Integral, Derivative
	and Composite Modes. Study of various computer
	Controlled Electrical and Mechanical Systems. Practical
	Study of various controllers by using Op-Amps, Use of
	microprocessors in process control.
References:	Johnson CD.1977. Process Control Instrumentation
	• Johnson CD.1977. Process Control Instrumentation Technology. PPH.
	 Manke BS.2006. Linear Control System. Khanna
	Manke BS.2000. Linear Control System. Knanna Publishers
Course Outcomes	At the end of the course, learners will be able
	CO1: Comprehend the process system design.
	CO2: List controlled and controlling variables, and to
	describe the criteria to evaluate the performance of a
	process-control loop.
	.CO3: Design a controller operating in the proportional-
	integral-derivative mode combination with three-mode
	controller.
	CO4: Design the application of different sensors, for
	temperature, fluid, liquid and pressure.
Mapping between Cos, POs a	
TT B B B B B B B B B B	-

СО		PO PSO										PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															1
CO2															3
CO3															
CO4															
•										-		•			

Course code	ME 501
Course title	MECHANISM ANALYSIS AND SYNTHESIS
Corse credit	3 (3+0)
Objective of Course	 Objective 1.To acquaint and equip the students with important area for analysis and design of Farm Machinery Mechanism 2.Compute velocity and acceleration in mechanisms. 3.To study Dimensional synthesis of linkages, analytical and graphical approach for mechanisms 4.To study various power transmission drives, gear trains, Cam design, and cam profile
Course Content	 UNIT I Introduction to kinematics of mechanisms, kinematic analysis and synthesis, mobility, and degree of freedom of a mechanism, systematic of mechanisms deriving other mechanisms from linkages. UNIT II Relative motion, instantaneous centre method, Kennedy's theorem. Graphical and analytical methods of displacement, velocity and acceleration analysis, Computer – Aided analysis of mechanisms. UNIT III Dimensional synthesis of linkages for path generation, function generation and rigid-body guidance problems. Graphical techniques. Relative pole method and method of inversion etc. Analytical kinematics synthesis of linkages, Freudenstein's method, Loop closure equations based on complex. variable approach UNIT IV Kinematics of gears-Analysis of epicyclic gear trains. Synthesis of gear trains compound and epicyclic. Cam – follower system; standard follower motions and combinations, importance of follower acceleration in cam system dynamics, terms related to cam design- their importance. Cam synthesis – graphical cam profile layout for a desired follower motion. Analytical determination of cam profile co-ordinates for disc cam operating common types of follower.
References:	George N Sandor & Arthur G Erdman.1984. Advanced Mechanism Design - Analysis and Synthesis. Vols. I, II. Prentice Hall. Norton. 2003. Design of Machinery - An Introduction to the Synthesis and

			SI	Analysis of Mechanisms and Machines. McGraw Hill. Shigley Vicker. 2007. Theory of Machines and Mechanisms. McGraw H Soni AH. 1974. Mechanism Synthesis and Analysis. McGraw Hill.											
Course Out	come	s	Α	At the end of the course, learners will be able											
			C	01: T	'o exp	lain tl	ne pri	nciple	es of ar	alysis a	and des	ign of l	Farm	Machi	nery
			Μ	lechan	ism										
			C	02: T	o do v	veloci	ty and	1 acce	eleratio	n analy	vsis.				
			C	03: A	pply	the co	ncept	of D	imensi	onal sy	nthesis	of link	ages.		
			C	O4: S	olve t	he pro	oblem	s of c	lrives,	gear tra	ins, ge	neration	n of ca	am pro	file.
Mapping b	oetwee	en Co	s, PO	s and	PSO	S									
СО							PO							PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															

Course code	ME-502
Course title	Vibrations
Corse credit	3+0
Objective of Course	 To understand fundamental principles and theories essential for the analysis and operation of agricultural equipment. Develop students' analytical skills in the field of farm machinery dynamics. To develop the ability to effectively analyse, troubleshoot, and optimize the performance of agricultural equipment in real-world scenarios.
Course Content	 UNIT I: Vibration motion and its terminology. Undamped free vibrations, equations of motion-natural frequency. Energy method, Rayleigh method; effective mass Principle of Virtual work. Equivalent spring stiffness in parallel and in series. Harmonic analysis and Fourier Series. Damping – viscous, solid, coulomb equivalent dampers. Viscosity damped free vibrations, Logarithmic decrement. Forced vibrations with harmonic excitation and rotating unbalance, Energy dissipated by damping. Forced vibration with damping, Vibration isolation and force and motion transmissibility. UNIT II: Two degree of freedom systems. Principal modes of vibration, co-ordinate coupling. Vibration absorbers, Free vibration equation of motion for multi- degree of freedom systems. Influence coefficients and Maxwell's reciprocal theorem, stiffness coefficients. Numerical methods for finding natural frequencies for multi degree of freedom systems. UNIT III: Vibration of lumped parameter systems and continuous systems. Lagrange equations. Vibration measuring instruments: Vibrometers, velocity pickups, Accelerometer, and frequency measuring instruments. Applications of vibrations.
References:	1. V.P. Singh.2014. Mechanical Vibrations. Dhanpat Rai

					an	d Co	mpar	ny, No	ew D	elhi					
				2	. Ra	ao S	SS	5. 2	010.1	Mechai	nical	Vibrat	ions.	Pe	arson
					Ec	lucati	ion, I	Delhi							
				3	S. Sr	iniva	S	P.198	33.	Mech	anical	Vib	ratio	n	
		Analysis. Tata McGraw Hill Company													
					Li	mited	l,Nev	w Del	lhi						
				4	. Da	aniel	J Ir	nman.	.2013	. Engi	ineerin	g Vibr	atior	n. Pro	entice
								ersey							
Course O	utcom	es		At th	ne eno	d of t	he co	urse,	learr	ners wi	ll be ab	ole			
											ng: Gra			-	
										0	signifi		-	-	
										0	them		-		
							0		-	+	and its				
						•				•	Studen				
											amics				
						-		•			and add				
					-	, sat	ety,	and	overa	ill peri	forman	ce in t	the a	Igricu	ltural
				conte			TZ		1		4 1	CI-911	C	1	
					-	-			U		actical				
											ical kn lls in t				
											ng they				
							-	-			ural inc		en-p	repare	eu 101
L	hotw	oon (neng	CS III	une a	gricuit	urai III	usu y.			
Manning			, os, 1	050	inu I	505	PO							PSO	
Mapping															
Mapping CO		2	3	4	5	6	-	8	9	10	11	12	1		
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
		2	3	4	5	6	-	8	9	10	11	12	1		

Course code	PGS 502
Course title	Technical Writing and Communication Skills
Corse credit	1 (0+1)
Objective of Course	 8. To equip the students/scholars with skills to write dissertations, research papers, etc. 9. To equip the students/ scholars with skills to communicate and articulate in English (verbal as well as writing).
Course Content	Practical

	Technical Writing –
	Various forms of scientific writings- theses, technical papers,
	reviews, manuals, etc; Various parts of thesis
	and research communications (title page, authorship contents
	page, preface, introduction, review of literature,
	material and methods, experimental results and discussion);
	Writing of abstracts, summaries, précis, citations
	etc.; commonly used abbreviations in the theses and research
	communications; illustrations, photographs
	and drawings with suitable captions; pagination, numbering of
	tables and illustrations; Writing of numbers
	and dates in scientific write-ups; Editing and proof-reading;
	Writing of a review article. Communication
	Skills - Grammar (Tenses, parts of speech, clauses, punctuation
	marks); Error analysis (Common errors);
	Concord; Collocation; Phonetic symbols and transcription;
	Accentual pattern: Weak forms in connected
	speech: Participation in group discussion: Facing an interview;
	presentation of scientific papers.
References:	Suggested Readings
	1. Chicago Manual of Style. 14th Ed. 1996. Prentice Hall of
	India.
	2. Collins' Cobuild English Dictionary. 1995.
	3. Harper Collins. Gordon HM & Walter JA. 1970. Technical
	Writing. 3rd Ed.
	4. Holt, Rinehart & Winston. Hornby AS. 2000. Comp. Oxford
	Advanced Learner's Dictionary of Current
	English. 6th Ed. Oxford University Press.
	5. James HS. 1994. Handbook for Technical Writing. NTC
	Business Books.
	6. Joseph G. 2000. MLA Handbook for Writers of Research
	Papers. 5th Ed. Affiliated East- West Press.
	7. Mohan K. 2005. Speaking English Effectively. MacMillan
	India. 9. Dishard WS 1060 Technical Writing
	8. Richard WS. 1969. Technical Writing.
	9. Barnes & Noble. Robert C. (Ed.). 2005. Spoken English:
	Flourish Your Language.
	10. Abhishek. Sethi J & Dhamija PV. 2004. Course in Phonetics
	and Spoken English. 2nd Ed. Prentice Hall of India. 11. Wren PC & Martin H. 2006. High School English Grammar
	and Composition. S. Chand & Co.
Course Outcomes	
	At the end of the course, learners will be able
	CO1: to write dissertations, research papers, etc.CO2: to effectively communicate and articulate orally in English
	Communications
	CO3: to effectively communicate and articulate in written
	English Communications
Mapping between Cos,	
CO 1 2 3	PO PSO PSO
1 2 3	4 5 6 7 8 9 10 11 12 1 2 3

CO1								
CO2								
CO3								

Course code	PGS-504
Course title	BASIC CONCEPTS IN LABORATORYTECHNIQUES
Corse credit	1(0+1)
Objective of Course	 To acquaint the students about the basics of commonly used techniques in laboratory. To make them aware with the safety precautions to be taken in chemistry laboratory. To learn the qualitative and quantitative aspects of common laboratory equipment. To expose to the factors that affect the accuracy of an experiment. To ensure experiments give the most accurate results.
Course Content	
	Practical Safety measures while in Lab; Handling of chemical substances; Use of burettes, pipettes, measuring cylinders, flasks, separatory funnel, condensers, micropipettes and vaccupets; washing, drying and sterilization of glassware; Drying of solvents/chemicals. Weighing and preparation of solutions of different strengths and their dilution; Handling techniques of solutions; Preparation of different agro-chemical doses in field and pot applications; Preparation of solutions of acids; Neutralisation of acid and bases; Preparation of buffers of different strengths and pH values. Use and handling of microscope, laminar flow, vacuum pumps, viscometer, thermometer, magnetic stirrer, micro-ovens, incubators, sandbath, waterbath, oilbath; Electric wiring and earthing. Preparation of media and methods of sterilization; Seed viability testing, testing of pollen viability; Tissue culture of crop plants; Description of flowering plants in botanical terms in relation to taxonomy
References:	Furr AK. 2000. CRC Hand Book of Laboratory Safety. CRC
	Press. Gabb MH & Latchem WE. 1968. <i>A Handbook of Laboratory</i> <i>Solutions</i> . Chemical Publ. Co
Course Outcomes	At the end of the course, learners will be able CO1 : Understand the different types of apparatus to be used in laboratory and how to calibrate them. CO2 : These skills play a significant role in order to perform various experiments and to run various tests. CO3 : Basic laboratory skills are the techniques required for conducting experiments. These include pouring, measuring, filtration, and using gas burners and glassware. CO4 :Prepare different media and solutions.

Mappin	Mapping between Cos, POs and PSOs															
CO		РО												PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1																
CO2																
CO3																
CO4																
CO5																

Course code	PGS-506(e-Course)
Course title	DISASTER MANAGEMENT
Corse credit	1(1+0)
Objective of Course	 To introduce learners to different types of manmade and natural disasters To equip them to conduct thorough assessment of hazards, and risks vulnerability; and capacity building To introduce learners to the key concepts and practices of natural disaster management. To mitigate natural disasters at national and global levels.
Course Content	Course content :
References	Theory <u>UNIT I</u> Natural Disasters- Meaning and nature of natural disasters, their types and effects. Floods, Drought, Cyclone, Earthquakes, Landslides, Avalanches, Volcanic eruptions, Heat and cold Waves, Climatic Change: Global warming, Sea Level rise, Ozone Depletion <u>UNIT II</u> Man Made Disasters- Nuclear disasters, chemical disasters, biological disasters, building fire, coal fire, forest fire. Oil fire, air pollution, water pollution, deforestation, Industrial wastewater pollution, road accidents, rail accidents, air accidents, sea accidents. <u>UNIT III</u> Disaster Management- Efforts to mitigate natural disasters at national and global levels. International Strategy for Disaster reduction. Concept of disaster management, national disaster management framework; financial arrangements; role of NGOs, Community-based organizations, and media. Central, State, District and local Administration; Armed forces in Disaster response; Disaster response: Police and other organizations Gunta HK 2003 Disaster Management Indian National Science
References:	 Gupta HK. 2003.Disaster Management. Indian National Science Academy. Orient Blackswan. Hodgkinson PE & Stewart M. 1991.Coping with Catastrophe: A Handbook of Disaster Management. Routledge. Sharma VK. 2001.Disaster Management. National Centre for

	Disaster															
				Management, India.												
Course Outcomes				At the end of the course, learners will be able												
				CO1 : Understand the different types of disasters and causes for												
				disasters.												
				CO2 : Students will be equipped with various methods of risk												
				reduction measures and risk mitigation.												
				CO3: Gain knowledge on the impacts Disasters on												
				environment and society.												
				CO4: Understand the role of Information Technology in												
				Disaster Management.												
				CO5: Study and assess vulnerability of a geographical area.												
Mapping between Cos, POs and PSOs																
СО	РО											PSO				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1																
CO2																
CO3																
CO4																
CO5																